

QualityMathematical Approaches to Software

Gerard O’Regan

Mathematical
Approaches to
Software Quality

With 52 Figures

Gerard O’Regan, BSc, MSc, PhD
11 White Oaks, Mallow, Co. Cork, Ireland
oregang@yahoo.com

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005935914

ISBN-10: 1-84628-242-X Printed on acid-free paper
ISBN-13: 978-1-84628-242-3

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regulations
and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed in the United States of America (SPI/EB)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

To the memory of Con and Eily O’Regan

(Too dearly loved to be forgotten)

Preface

Overview
The objective of this book is to provide a comprehensive introduction to mathe-

matical approaches that can assist in achieving high-quality software. An intro-

duction to mathematics that is essential for sound software engineering is

provided, as well as a discussion of the various mathematical methods that are

used in academia and (to varying degrees) in industry. The mathematical

approaches considered here include the Z specification language; the Vienna

Development Method (VDM); the Irish school of VDM (VDM); the axiomatic

approach of Dijkstra and Hoare; the classical engineering approach of Parnas;

the Cleanroom approach developed at IBM; software reliability, and the unified

modeling language (UML). Finally, the challenge of technology transfer of the

mathematical methods to industry is considered.

The book aims to explain the main features of the mathematical

approaches to the reader, and to thereby assist the reader in applying these

methods to solve practical problems. The chapter on technology transfer pre-

sents an overview of how these technologies may be transferred to industry, and

includes a discussion on the usability of formal methods and pilots of formal

methods.

Organization and Features

Chapter 1 provides an introduction to an engineering approach to software

development using mathematical techniques. A review of the more popular formal

methods is presented. These include the model-oriented approaches of Z or VDM,

and the axiomatic approaches such as the Communicating Sequential Processes

(CSP). The nature and role of mathematical proof is discussed, as mathematical

proof has the potential to play a key role in program verification.

The second chapter considers the mathematics required for sound soft-

ware engineering. This includes discrete mathematics such as set theory, func-

tions and relations; propositional and predicate logic for software engineers;

tabular expressions as developed by Parnas; probability and applied statistics for

the prediction of software reliability; calculus and matrix theory; finite state

machines; and graph theory.

viii Preface

Chapter 3 is a detailed examination of mathematical logic including

propositional and predicate calculus, as well as an examination of ways to deal

with undefined values that arise in specification. The three approaches to un-

definedness considered are the logic of partial functions (LPFs) developed by

Cliff Jones; the approach of Parnas that essentially treats a primitive predicate

calculus expression containing an undefined value as false, and thereby preserv-

ing a 2-valued logic; and the approach of Dijkstra that uses the cand and cor

operators.

The next three chapters are concerned with the model-oriented ap-

proach of formal specification. Chapter 4 on Z includes the main features of the

specification language as well as the schema calculus. Chapter 5 on VDM de-

scribes the history of its development at IBM in Vienna, the main features of the

language and its development method. Chapter 6 on VDM explains the phi-

losophy of the Irish school of VDM, and explains how it differs from standard

VDM. Z and VDM are the two most widely used formal specification languages

and have been employed in a number of industrial projects.

Chapter 7 focuses on the approach of Dijkstra and Hoare including the

calculus of weakest preconditions developed by Dijkstra and the axiomatic se-

mantics of programming languages developed by Hoare. Chapter 8 discusses the

classical engineering approach of Parnas, and includes a discussion on tabular

expressions. Tabular expressions have been employed to provide a mathematical

specification of the requirements of the A-7 aircraft and to certify the shutdown

software for the Darlington nuclear power plant.

Chapter 9 is concerned with the Cleanroom approach of Harlan Mills

and the mathematics of software reliability. Cleanroom enables a mathematical

prediction of the software reliability to be made based on the expected usage of

the software. The software reliability is expressed in terms of the mean time to

failure (MTTF). Chapter 10 is concerned with the unified modeling language

(UML). This is a visual approach to the formal specification and design of soft-

ware, and the UML diagrams provide different viewpoints of the proposed sys-

tem. The final chapter is concerned with the technology transfer of the

mathematical approaches to industry. This includes piloting formal methods on

one or more projects to evaluate their suitability for the organization.

Audience
This book is suitable for undergraduate and graduate computer science students

who are interested in an overview of mathematical methods that may be em-

ployed to develop high-quality software. The material is mathematical but is

presented as simply as possible. Motivated software and quality engineers who

are interested in knowing how a mathematical approach can assist in achieving

high-quality software will find the book to be a useful overview.

Acknowledgments

I am deeply indebted to friends and colleagues in industry and academia who

supported my efforts in this endeavor. I would like to thank the team at Springer

for his many helpful comments and suggestions. Finally, I would also like to

thank family and personal friends such as Kevin and Maura for support.

Gerard O’Regan.

November 2005

ix Preface

for their professional work and a special thanks to the copyeditor (M. Bearden)

Contents:

Preface ... iv i

1. Introduction .. 1

1.1 Software Engineering .. 3

1.2 Software Engineering Mathematics .. 6

1.3 Formal Methods ... 8

1.3.1 Why Should We Use Formal Methods? 10

1.3.2 Applications of Formal Methods ... 12

1.3.3 Tools for Formal Methods .. 13

1.3.4 Model-Oriented Approach .. 16

1.3.5 Axiomatic Approach .. 17

1.3.6 The Vienna Development Method ... 18

1.3.7 VDM
♣
, the Irish School of VDM ... 19

1.3.8 The Z Specification Language .. 20

1.3.9 Propositional and Predicate Calculus 22

1.3.10 The Parnas Way ... 25

1.3.11 Unified Modeling Language ... 27

1.3.12 Proof and Formal Methods.. 29

1.4 Organization of This Book .. 30

1.5 Summary ... 31

2. Software Engineering Mathematics 33

2.1 Introduction .. 33

2.2 Set Theory .. 34

2.3 Relations .. 37

2.4 Functions ... 38

2.5 Logic ... 40

.......................

..................

............

............

..

.

..

.

..

...

..

...

................

.......

............

.............

...........

...........

......

..........

Acknowledgments .. ix ..

2.8 Calculus .. 46

2.9 Matrix Theory .. 47

2.10 Finite State Machines ... 48

2.11 Graph Theory ... 50

2.12 Tools for Mathematics .. 51

2.13 Summary ... 51

3. Logic for Software Engineering ... 53

3.1 Introduction ... 53

3.2 Propositional Logic ... 55

3.2.1 Truth Tables ... 56

3.2.2 Properties of Propositional Calculus .. 57

3.2.3 Proof in Propositional Calculus .. 58

3.2.4 Applications of Propositional Calculus....................................... 61

3.2.5 Limitations of Propositional Calculus 62

3.3 Predicate Calculus .. 62

3.3.1 Properties of Predicate Calculus .. 64

3.3.2 Applications of Predicate Calculus ... 65

3.4 Undefined Values .. 66

3.4.1 Logic of Partial Functions ... 67

3.4.2 Parnas Logic ... 68

3.4.3 Dijkstra and Undefinedness .. 70

3.5 Miscellaneous ... 71

3.6 Tools for Logic ... 72

3.7 Summary .. 73

4. Z Specification Language ... 75

4.1 Introduction ... 75

................

........

.............

............

........

.............

.....

...................

.......................

...................

..

......

..

...............

.

.....

.....

.....

.....

........

......

.......................

...........

........

 xi i Cont ents

2.7 Probability and Applied Statistics 43..........................

2.6 Tabular Expressions .. 42.............

4.6 Bags ... 83

4.7 Schemas and Schema Composition ... 85

4.8 Reification and Decomposition .. 87

4.9 Proof in Z .. 89

4.10 Tools for Z ... 90

4.11 Summary .. 91

5. Vienna Development Method ... 92

5.1 Introduction .. 92

5.2 Sets ... 95

5.3 Sequences .. 97

5.4 Maps ... 98

5.5 Logic in VDM .. 100

5.6 Data Types and Data Invariants ... 101

5.7 Specification in VDM .. 102

5.8 Refinement ... 104

5.9 Tools for VDM ... 105

5.10 Summary... 107

6. Irish School of VDM .. 109

6.1 Introduction .. 109

6.2 Mathematical Structures and Their Morphisms 111

6.3 Models and Modeling ... 114

6.4 Sets ... 114

6.5 Relations and Functions ... 116

6.6 Sequences .. 118

.....

....

..

...

...

...

.....

...

...

...........

....

.........

...

..

....

...

..

......

...

.

..

..

...

xiiiContents

4.5 Sequences ... 82..........

4.2 Sets ... 78

4.3 Relations .. 79

4.4 Functions ... 81

.......

...........

..........

 Contents

7.2 Calculus of Weakest Preconditions .. 129

7.3 Axiomatic Definition of Programming Languages 135

7.4 Communicating Sequential Processes .. 138

7.5 Summary .. 141

8. The Parnas Way .. 143

8.1 Introduction .. 143

8.2 Achievements .. 144

8.3 Tabular Expressions ... 146

8.4 Software Development Documentation ... 154

8.5 System Requirements ... 158

8.6 System Design and Software Requirements 164

8.7 Software Design .. 165

8.8 Software Inspections .. 170

8.9 Tools ... 174

8.10 Summary... 175

9. Cleanroom and Software Reliability ... 176

9.1 Introduction .. 176

9.2 Cleanroom ... 177

9.3 Statistical Techniques .. 184

9.4 Software Reliability .. 185

9.5 Summary ... 195

...

...

.

....

...

.....

..

......

..

....

.......

...

....

...

.

..

.

..

..

...

 x iv

7.1 Introduction .. 126 .

6.7 Indexed Structures ... 120

6.8 Specifications and Proofs ... 120

6.9 Refinement ... 122

6.10 Summary... 125

7. Dijkstra and Hoare .. 126

....

.

..

xv Contents

11.1 Introduction .. 211

11.2 Formal Methods and Industry ... 212

11.3 Usability of Formal Methods ... 214

11.4 Pilot of Formal Methods .. 216

11.5 Technology Transfer of Formal Methods 218

11.6 Summary... 218

References.. 220

11. Technology Transfer .. 211....

Abbreviations...227

Index ..229

10. Unified Modeling Language .. 197

10.1 Introduction .. 197

10.2 Overview of UML ... 198

10.3 UML Diagrams .. 201

10.4 Object Constraint Language .. 206

10.5 Rational Unified Process.. 207

10.6 Tools for UML .. 209

10.7 Summary... 210

....

.

..

1

Introduction

NATO organized two famous conferences on software engineering in the late

1960s. The first conference was held in Garmisch, Germany, in 1968 and was

followed by a second conference in Rome in 1969. The NATO conferences

highlighted the problems that existed in the software sector in the late 1960s and

the term software crisis was coined to refer to the problems associated with

software projects. These included budget and schedule overruns and problems

with the quality and reliability of the delivered software. This led to the birth of

software engineering as a separate discipline and the realization that program-

ming is quite distinct from science and mathematics. Programmers are like engi-

neers in the sense that they build products; however, programmers are not

educated as traditional engineers as they receive minimal education in design

and mathematics. Consequently, Parnas argues [Par:01] that problems with

software can be expected if individuals are neither properly educated nor quali-

fied for the job that they are performing.1

 The construction of bridges was problematic in the 19th century and

many people who presented themselves as qualified to design and construct

bridges did not have the required knowledge and expertise. Consequently, many

bridges collapsed, endangering the lives of the public. This led to legislation

requiring an engineer to be licensed by the Professional Engineering Association

prior to practicing as an engineer. These associations identify a core body of

knowledge that the engineer is required to possess and the licensing body veri-

fies that the engineer has the required qualifications and experience. The licens-

ing of engineers by most branches of engineering ensures that only personnel

competent to design and build products actually do so. This in turn leads to

products that the public can safely use; in other words, the engineer has a re-

sponsibility to ensure that the products are properly built and are safe to use.

1 Software Companies that are following approaches such as the CMM or ISO 9000:2000 consider

the qualification of staff before assigning staff to performing specific tasks. The approach adopted is

that only staff with the appropriate qualifications and experience are assigned to the particular role.

However, as Parnas has noted there is no professional software engineering body that licenses soft-

ware engineers. My experience is that the more mature companies place significant emphasis on the

education and continuous development of their staff and in introducing best practice in software

engineering into their organization. I have observed an increasing trend among companies to mature

their software processes to enable them to deliver superior results. One of the purposes that the

original CMM served was to enable the U.S. Department of Defense (DOD) to have a mechanism to

assess the capability and maturity of software subcontractors.

 2 Mathematical Approaches to Software Quality

This is to be contrasted with the software engineering discipline where

there is no licensing mechanism and where individuals with no qualifications

can participate in building software products. Parnas argues that the resulting

problems with software quality should come as no surprise as the work is being

performed by staff who do not have the right education and training to perform

their roles.2

 The Standish group conducted research [ORg:02] on the extent of cur-

rent problems with schedule and budget overruns of IT projects. This study was

conducted in the United States but there is no reason to believe that European or

Asian companies perform any better. The results indicate that 33% of projects

are between 21 and 51% over estimate; 18% are between 51% and 100% over

estimate; and 11% are between 101% and 200% over estimate.3 Fred Brooks

argues that software is inherently complex and that there is no silver bullet that

will resolve all of the problems associated with software such as schedule over-

runs and software quality problems [Brk:75, Brk:86].

The problem with poor software quality and poor software design is

very evident in the numerous security flaws exhibited in Microsoft Windows

software. Such flaws can cause minor irritation at best or at worse can seriously

disrupt the work of an organization or individual. The Y2K problem, where

dates were represented in a 2-digit format, required major rework for year 2000

superior.4 These companies employ mature software processes and are commit-

ted to continuous improvement.

The focus of this book is on mathematical techniques that can assist

software quality rather than on the problem of estimation and on-time delivery that

is part of project management. Mathematics plays a key role in engineering and

can assist software engineers in delivery of high-quality products that are safe to

use. There is a lot of industrial interest in software process maturity for software

organizations, and approaches to assess and mature software companies are de-

scribed in [ORg:02].5 These focus mainly on improving the effectiveness of the

2 Parnas’s comments are overly severe in my experience. The mature software companies do con-

sider qualification of staff and employ rigorous processes including software inspections and testing

to assure quality.

3 It should be noted that these are IT projects covering diverse sectors including banking, telecom-

munications, etc., rather than pure software companies. My experience is that mature software com-

panies following maturity frameworks such as level 2 or level 3 CMM maturity achieve project

delivery generally within 20% of the project estimate. Mathematical approaches to software quality

are focused on technical ways to achieve software quality. There is also the need to focus on the

management side of software engineering also as this is essential for project success. The reader is

referred to [ORg:02].

4 I am familiar with projects at Motorola that achieved 5.6σ-quality in a L4 CMM environment (i.e.,

approx 20 defects per million lines of code, which represents very high quality).

5 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and organ-

izational practices required in software engineering. The emphasis is on defining and following the

software process. However, there is insufficient technical detail on requirements, design, coding and

compliance. Clearly, well-designed programs would have hidden the repre-

sentation of the date and would have required minimal changes for year 2000

compliance. However, the quality of software produced by some companies is

 1. Introduction 3

management and organization practices related to software engineering. The use

of mathematical techniques is complementary to a maturity approach such as the

Capability Maturity Model (CMM). The CMM allows the mathematical tech-

niques to be properly piloted to verify that the approach suits the company and that

superior results will be achieved by using mathematical methods. The bottom line

for a software company is that the use of formal methods should provide a cost-

effective solution. The CMM also includes practices to assist with a sound de-

ployment of a new process.

1.1 Software Engineering

Software engineering involves multiperson construction of multiversion pro-

grams. Sound software engineering requires the engineer to state precisely the

requirements that the software product is to satisfy and then to produce designs

that will meet these requirements. Software engineers should start with a precise

description of the problem to be solved; then proceed to producing a design and

validating the correctness of the design; finally, implementation and testing are

performed. The software requirements should clearly state what is required and

it should be evident what is not required. Engineers are required to produce the

product design and then analyze their design for correctness. An engineering

analysis of the design includes mathematics and software inspections, and this is

essential to ensure the correctness of the design. The term engineer is generally

applied only to people who have attained the necessary education and compe-

tence to be called engineers and who base their practice on mathematical and

scientific principles. Often in computer science the term engineer is employed

loosely to refer to anyone who builds things rather than to an individual with a

core set of knowledge, experience, and competence.

Parnas is a strong advocate of a classical engineering approach and ar-

gues that computer scientists should have the right education to apply scientific

and mathematical principles in their work. Software engineers need to receive an

appropriate education in mathematics and design in order to be able to build

high-quality and safe products. Often, computer science courses tend to empha-

size the latest programming language rather than the essential engineering foun-

dations. The material learned in a computer science course is often outdated

shortly after the student graduates. The problem is that students are generally

taught programming and syntax but not how to design and analyse software.

Computer science courses tend to include a small amount of mathematics

whereas mathematics is a significant part of an engineering course. The engi-

neering approach to the teaching of mathematics is to emphasize its application

and especially the application to developing and analyzing product designs. The

mathematics that software engineering students need to be taught includes sets,

relations, functions, mathematical logic, tabular expression, and finite state

testing and the focus of this book is more on the mathematical approach needed for a good unambi-

guous definition of the requirements.

 4 Mathematical Approaches to Software Quality

machines. The emphasis needs to be on the application of mathematics to solve

practical problems.

The consequence of the existing gap in the education of current soft-

ware engineers is that there is a need to retrain existing software engineers with
a more solid engineering education.6 Software engineers need education on

specification, design, turning designs into programs, software inspections, and

testing. The education should enable the software engineer to produce well-

structured programs using module decomposition and information hiding.

Parnas has argued that software engineers have individual responsibili-

ties as professionals.7 They are responsible for designing and implementing

high-quality and reliable software that is safe to use. They are also accountable
for their own decisions and actions8 and have a responsibility to object to deci-

sions that violate professional standards. Professional engineers have a duty to

their clients to ensure that they are solving the real problem of the client. They

need to precisely state the problem before working on its solution. Engineers

need to be honest about current capabilities when asked to work on problems

that have no appropriate technical solution rather than accepting a contract for

something that cannot be done.9

The licensing of a professional engineer provides confidence that the

engineer has the right education and experience to build safe and reliable prod-

ucts. Otherwise, the profession gets a bad name as a result of poor work carried

out by unqualified people. Professional engineers are required to follow rules of

good practice and to object when rules are violated. The licensing of an engineer

requires that the engineer completes an accepted engineering course and under-

stands the professional responsibility of the engineer. The professional body is

6 Realistically, a mass reeducation program for current software engineers is highly unlikely. Any

retraining program for current software engineers would need to minimize the impact on company

time as software companies are very focused on the bottom line in the very competitive environment

of the new millennium. This includes intense competition from the low cost software development

locations in Eastern Europe and Asia as outsourcing of software development to such locations is an

increasing trend.

7 The concept of accountability is not new; indeed the ancient Babylonians employed a code of laws

c. 1750 B.C. known as the Hammarabi Code. This code included the law that if a house collapsed

and killed the owner then the builder of the house would be executed.

8 However, it is unlikely that an individual programmer would be subject to litigation in the case of

a flaw in a program causing damage or loss of life. Most software products are accompanied by a

comprehensive disclaimer of responsibility for problems rather than a guarantee of quality. Software

engineering is a team-based activity involving many engineers in various parts of the project and it

could be potentially difficult for an outside party to prove that the cause of a particular problem is

due to the professional negligence of a particular software engineer, as there are many others in-

volved in the process such as reviewers of documentation and code and the various test groups.

Companies are more likely to be subject to litigation, as a company is legally responsible for the

actions of their employees in the workplace. However, the legal aspects of licensing software may

protect software companies from litigation including those companies that seem to place little em-

phasis on software quality. However, greater legal protection for the customer can be built into the

contract between the supplier and the customer for bespoke-software development.

9 Parnas applied this professional responsibility faithfully when he argued against the Strategic

Defense Initiative (SDI) as he believed that the public (i.e., taxpayers) was being misled and that the

goals of the project were not achievable.

 1. Introduction 5

responsible for enforcing standards and certification. The term engineer is a title

that is awarded on merit but also places responsibilities on its holder.

Engineers have a professional responsibility and are required to behave

ethically with their clients. The membership of the professional engineering

body requires the member to adhere to the code of ethics of the profession. The

code of ethics10 will detail the ethical behavior and responsibilities including:

No. Responsibility

1. Honesty and fairness in dealings with clients.

2. Responsibility for actions.

3. Continuous learning to ensure appropriate

knowledge to serve the client effectively.
Table 1.1. Professional Responsibilities of Software Engineers

The approach used in current software engineering is to follow a well-

defined software engineering process. The process includes activities such as

requirements gathering, requirements specification, architecture design, software

design, coding,and testing. Most companies use a set of templates for the vari-

ous phases (e.g., the IEEE standards). The waterfall model [Roy:70] and spiral

model [Boe:88] are popular software development lifecycles.

The concept of process maturity has become popular with the Capabil-

ity Maturity Model, and organizations such as the SEI have collected empirical

data to suggest that there is a close relationship between software process matur-

ity and the quality and the reliability of the delivered software. However, the

main focus of the CMM is management and organization practices rather than

on the technical engineering practices.

 There has been a growth of popularity among software developers in

light-weight methodologies such as XP [Bec:00]. These methodologies view

documentation with distaste and often software development commences prior

to the full specification of the requirements.

Classical engineering places emphasis on detailed planning and design

and includes appropriate documentation. The design documents are analyzed

and reviewed and used as a reference during the construction. Documentation is

produced in the software sector with varying degrees of success. The popularity

of a methodology such as XP suggests developer antipathy to documentation.

However, the more mature companies recognize the value in software documen-

tation and regard documentation as essential for all phases of the project. It is

essential that the documentation is kept up to date and reflects the actual system

since the impact of any changes requested to the software during maintenance

cannot be properly determined. The empirical evidence suggests (e.g., [Let:03])

that software documentation is often out of date.

The difference between engineering documents and standard software

documents (e.g., documentation following the IEEE templates) is that engineering

10 My experience of working in software companies is that these are core values of most mature

software companies. Larger companies have a code of ethics that employees are required to adhere

to.

 6 Mathematical Approaches to Software Quality

documents are precise enough to allow systematic analysis to be carried out,

whereas since software documents employ natural language rather than mathe-

matics, only limited technical evaluation may take place. The analysis of engi-

neering documents uses mathematics to verify that the design is correct.

Therefore, if software engineers are to perform as engineers then the software

documents should be similar to engineering documents, and should include suf-

ficient mathematics to allow rigorous analysis to be performed. The mathemat-

ics for software engineering is described in the next section.

1.2 Software Engineering Mathematics

The use of mathematics plays a key role in the engineer’s work; for example,

bridge designers will develop a mathematical model of a bridge prior to its

construction. The model is a simplification of the reality, and an exploration of

the model enables a deeper understanding of the proposed system to be

gained. Engineers will model the various stresses on the bridge to ensure that

the bridge design can deal with the projected traffic flow. The ability to use

mathematics to solve practical problems is part of the engineer’s education,

and part of the daily work of an engineer. The engineer applies mathematics

and models to the design of the product, and the analysis of the design is a

mathematical activity.

Mathematics allows a rigorous analysis to take place and avoids an

overreliance on intuition. The focus needs to be on mathematics that can be

applied to solve practical problems and in developing products that are fit for

use, rather than in mathematics for its own sake that is the interest to the pure

mathematician. The emphasis in engineering is always in the application of

the theorem rather than in the proof, and the objective is therefore to teach

students how to use and apply mathematics to program well and to solve prac-

tical problems.

There is a rich body of classical mathematics available that may be ap-

plied to software engineering. Other specialized mathematical methods and no-

tations have been developed by others to assist in software engineering (e.g., Z,

VDM, VDM , and CSP). The mathematical foundation for software engineering

should include:

Area Description

Set Theory This material is elementary but fundamental.

It is familiar to all high-school students. It

includes, for example, set union and intersec-

tion operations; the Cartesian product of two

sets, etc.

Relations A relation between A and B is a subset of AxB.

1 2

∈T if a1 is taller than a2

For example, the relation T(A, A) where (a ,a)

 1. Introduction 7

Functions A function f: A →B is a relation where for

each a ∈A there is exactly one b ∈ B such that

(a,b) ∈f. This is denoted by f(a) = b. Functions

may be total or partial.

Logic Logic is the foundation for formal reasoning.

It includes the study of propositional calculus

and predicate calculus. It enables further truths

to be derived from existing truths.

Calculus Calculus is used extensively in engineering

and physics to solve practical problems. It

includes differentiation and integration, nu-

merical methods, solving differential equa-

tions, etc.

Probability

Theory

Probability theory is concerned with determin-

ing the mathematical probability of various

events occurring. One example of its use in

software engineering is in predicting the reli-

ability of a software product.

Finite State

Machines

Finite state machines are mathematical entities

that are employed to model the execution of a

program. The mathematical machine is in a

given state and depending on the input there is

a change to a new state. Finite state machines

may be deterministic or non-deterministic.

Tabular

Expressions

This is an approach developed by Parnas and

others and may be employed to specify the

requirements of a system. It allows complex

predicate calculus expressions to be presented

in a more readable form (in a 2-dimensional

table) using a divide and conquer technique.

Graph Theory Graphs are useful in modeling networks and a

graph consists of vertices and edges. An edge

joins two vertices.

Matrix Theory This includes the study of 2 x 2 and m x n

dimensional matrices. It includes calculating

the determinants of a matrix and the inverses

of a matrix.

Table 1.2. Mathematics for Software Engineering

The use of mathematics in computer science is discussed in more detail

in Chapter 2. The emphasis is on mathematics that can be applied to solve prac-

tical problems rather than in theoretical mathematics. Next, we consider various

formal methods that may be employed to assist in the development of high-

quality software. Some of these are described in more detail in later chapters.

 8 Mathematical Approaches to Software Quality

1.3 Formal Methods

Spivey (cf., chapter one of [Spi:92]) describes “formal specifications as the use

of mathematical notation to describe in a precise way the properties which an

information system must have, without unduly constraining the way in which

these properties are achieved. Formal methods consist of formal specification

languages or notations and generally employ a collection of tools to support the

syntax checking of the specification and proof of properties of the specification.

This abstraction away from implementation enables questions about what the

system does to be answered, independently of the implementation, i.e., the de-

tailed code. Furthermore, the unambiguous nature of mathematical notation

avoids the problem of speculation about the meaning of phrases in an impre-

cisely worded natural language description of a system. Natural language is in-

herently ambiguous and subject to these limitations, whereas mathematics

employs highly precise notation with sound rules of mathematical inference.

The formal specification thus becomes the key reference point for the

different parties concerned with the construction of the system. This includes

determining customer needs, program implementation, testing of results, and

program documentation. It follows that the formal specification is a valuable

means of promoting a common understanding for all those concerned with the

system. The term formal methods is used to describe a formal specification lan-

guage and a method for the design and implementation of computer systems.

The specification is written in a mathematical language, and the im-

plementation is derived from the specification via step-wise refinement.11 The

refinement step makes the specification more concrete and closer to the actual

implementation. There is an associated proof obligation that the refinement is

valid, and that the concrete state preserves the properties of the more abstract

state. Thus, assuming that the original specification is correct and the proofs of

correctness of each refinement step are valid, then there is a very high degree of

confidence in the correctness of the implemented software. Step-wise refinement

is illustrated as follows: the initial specification S is the initial model M0; it is

then refined into the more concrete model M1, and M1 is then refined into M2,

and so on until the eventual implementation Mn = E is produced.

S = M0 M1 M2 M3 …….. Mn = E

Requirements are the foundation stone from which the system is built,

and irrespective of the best design and development practices, the product will

be incorrect and not what the customer wants if the requirements are incorrect.

The objective of requirements validation is to ensure that the requirements are

correct and reflect what is actually required by the customer (in order to build

the right system). Formal methods may be employed to model the requirements,

and the model exploration yields further desirable or undesirable properties. The

11 It is questionable whether step-wise refinement is cost effective in mainstream software engineer-

ing.

”

 1. Introduction 9

ability to prove that certain properties are true of the specification is very valu-

able, especially in safety critical and security critical applications. These proper-

ties are logical consequences of the definition of the requirements, and, if

appropriate, the requirements may need to be amended appropriately. Thus,

formal methods may be employed for requirements validation and in a sense to

debug the requirements.

The use of formal methods generally leads to more robust software and

increased confidence in the correctness of the software. The challenges involved

in the deployment of formal methods in an organization include the education of

staff in formal specification, as formal specification and the use of mathematical

techniques may be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications,

including circuit design, artificial intelligence, security critical field, the safety

critical field, railways, microprocessor verification, the specification of stan-

dards, and the specification and verification of programs.

Formal methods have been criticized by Parnas and others on the fol-

lowing grounds:

No. Criticism

1. Often the formal specification (written for example

in Z or VDM) is as difficult to read as the program

and therefore does not add value.12

2. Many formal specifications are wrong.13

3. Formal methods are strong on syntax but provide

little assistance in deciding on what technical in-

formation should be recorded using the syntax.14

4. Formal specifications provide a model of the pro-

posed system. However, a precise unambiguous

mathematical statement of the requirements is what

is needed. It should be clear what is required and

what is not required.15

12 Of course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and

that the notation used in some of the tables is quite unfriendly. The usability of all of the mathemati-

cal approaches needs to be enhanced if they are to be taken seriously by industrialists.

13 Obviously, the formal specification must be analyzed using mathematical reasoning and tools to

ensure its correctness. The validation of a formal specification can be carried out using mathematical

proof of key properties of the specification; software inspections; or specification animation.

14 Approaches such as VDM include a method for software development as well as the specification

language.

15 Models are extremely valuable as they allow simplification of the reality. A mathematical study

of the model demonstrates whether it is a suitable representation of the system. Models allow proper-

ties of the proposed requirements to be studied prior to implementation.

 10 Mathematical Approaches to Software Quality

5. Step-wise refinement is unrealistic.16 It is like, for

example, deriving a bridge from the description of a

river and the expected traffic on the bridge. Refin-

ing a formal specification to a program is like refin-

ing a blueprint until it turned into a house. This is

hardly realistic and there is always a need for a

creative step in design.

6. Many unnecessary mathematical formalisms have

been developed in formal methods rather than using

the available classical mathematics.17

Table 1.3. Criticisms of Formal Methods

However, formal methods are potentially quite useful in software engi-

neering. The use of a method such as Z or VDM forces the engineer to be pre-

cise and helps to avoid ambiguities present in natural language. My experience

is that formal specifications such as Z or VDM are reasonably easy to use.

Clearly, a formal specification should be subject to peer review to ensure that it

is correct. New formalisms may potentially add value in expressive power but

need to be intuitive to be usable by practitioners. The advantage of classical

mathematics is that it is familiar to students.

1.3.1 Why Should We Use Formal Methods?

There is a very strong motivation to use best practices in software engineering in

order to produce software adhering to high quality standards. Flaws in software

may at best cause minor irritations to customers, and in a worst-case scenario

could potentially cause major damage to a customer’s business or loss of life.

Consequently, companies will employ best practices to mature their software

processes. Formal methods are one leading-edge technology which studies sug-

gest may be of benefit to companies who wish to minimize the occurrence of

defects in software products.

The use of formal methods is mandatory in certain circumstances. The

Ministry of Defence in the United Kingdom issued two safety-critical standards

in the early 1990s related to the use of formal methods in the software develop-

ment lifecycle. The first is Defence Standard 0055, i.e., Def Stan 00-55, The

16 Step-wise refinement involves rewriting a program ad nauseum (each refinement step produces a

more concrete specification that includes code and formal specification) until eventually the detailed

code is produced. However, tool support may make refinement easier. The refinement calculus

offers a very rigorous approach to develop correct programs from formal specifications. However, it

is debatable whether it is cost effective in mainstream software development.

17 My preference is for the use of classical mathematics for specification. However, I see ap-

proaches such as VDM or Z as useful as they do add greater rigor to the software development proc-

ess than is achieved with the use of natural language. In fact, both Z and VDM are reasonably easy

to learn, and there have been some good results obtained by their use. I prefer to avoid fundamental-

ism that I have seen elsewhere and am of the view that if other notations add value in formal specifi-

cation then it is perfectly reasonable to employ them.

 1. Introduction 11

Procurement of safety critical software in defense equipment [MOD:91a]. This

standard makes it mandatory to employ formal methods in safety-critical soft-

ware development in the UK; and, in particular, it mandates the use of formal

mathematical proof that the most crucial programs correctly implement their

specifications. The other Defence Standard is Def Stan 00-56 Hazard analysis
and safety classification of the computer and programmable electronic system

elements of defense equipment [MOD:91b]. The objective of this standard is to

provide guidance to identify which systems or parts of systems being developed

are safety-critical and thereby require the use of formal methods. This is

achieved by subjecting a proposed system to an initial hazard analysis to deter-

mine whether there are safety-critical parts. The reaction to these defence stan-

dards 00-55 and 00-5618 was quite hostile initially as most suppliers were

unlikely to meet the technical and organization requirements of the standard, and

this is described in [Tie:91]. The standard indicates how seriously the Ministry

of Defence in the United Kingdom takes safety, and Brown in [Bro:90] argues

that

Missile systems must be presumed dangerous until shown to be safe, and that the

absence of evidence for the existence of dangerous errors does not amount to
evidence for the absence of danger.

It is quite possible that a software company may be sued for software which

injures a third party, and it is conjectured in [Mac:93] that the day is not far off

when

 A system failure traced to a software fault and injurious to a third party, will

lead to a successful litigation against the developers of the said system software.

This suggests that companies will need a quality assurance program that will

demonstrate that every reasonable practice was considered to prevent the occur-

rence of defects. One such practice for defect prevention is the use of formal

methods in the software development lifecycle, and in some domains, e.g., the

safety critical domain, it looks likely that the exclusion of formal methods in the

software development cycle may need to be justified.

There is evidence to suggest that the use of formal methods provides

savings in the cost of the project, for example, an independent audit of the large

CICS transaction processing project at IBM demonstrated a 9% cost saving at-

tributed to the use of formal methods. An independent audit of the Inmos float-

ing point unit of the T800 project confirmed that the use of formal methods led

to an estimated 12-month reduction in testing time. These savings are discussed

in more detail in chapter one of [HB:95].

The approach of modern software companies to providing high-quality

software on time and within budget is to employ a mature software development

18 I understand that the UK Defence Standards 0055 and 0056 have been revised recently to be less

prescriptive on the use of formal methods.

 12 Mathematical Approaches to Software Quality

process including inspections and testing. Models such as the CMM [Pau:93]

and CMMI [CKS:03] are employed to assist the organization to mature its soft-

ware process. The process-based approach is also useful in that it demonstrates

that reasonable practices are employed to identify and prevent the occurrence of

defects, and an ISO 9000 certified software development organization has been

independently assessed to have reasonable software development practices in

place. A formal methods approach is complementary to these models, and for

example, it fits comfortably into the defect prevention key process area and the

technology change management key process area on the Capability Maturity

Model.

1.3.2 Applications of Formal Methods

Formal methods are used in academia and to varying degrees in industry. The

safety-critical and security critical fields are two key areas to which formal

methods has been successfully applied in industry. Several organizations have

piloted formal methods with varying degrees of success. These include IBM,

which actually developed VDM at its laboratory in Vienna. Another IBM site,

IBM (Hursley) piloted the Z formal specification language in the United King-

dom, and it was employed for the CICS (Customer Information Control System)

project. This is an online transaction processing system with over 500,000 lines

of code. The project generated valuable feedback to the formal methods com-

munity, and although it was very successful in the sense that an independent

audit verified that the use of formal methods generated a 9% cost saving, there

was resistance to the deployment of the formal methods in the organization.19

This was attributed to the lack of education on formal methods in computer sci-

ence curricula, lack of adequate support tools for formal methods, and the diffi-

culty that the programmers had with mathematics and logic.

 The mathematical techniques developed by Parnas (i.e., requirements

model and tabular expressions) have been employed to specify the requirements

of the A-7 aircraft as part of a software cost reduction program for the United

States Navy 20. Tabular expressions have also been employed for the software

inspection of the automated shutdown software of the Darlington Nuclear power

plant in Canada.21 These are two successful uses of mathematical techniques in

software engineering.

19 I recall a keynote presentation by Peter Lupton of IBM (Hursley) at the Formal Methods Europe

(FME’93) conference in which he noted that there was a resistance to the use of formal methods

among the software engineers at IBM (Hursley), and that the engineers found the Z notation to be

slightly unintuitive.

20 However, I was disappointed to learn that the resulting software was actually never deployed on

the A-7 aircraft.

21 This was an impressive use of mathematical techniques and it has been acknowledged that formal

methods must play an important role in future developments at Darlington. However, given the time

and cost involved in the software inspection of the shutdown software some managers have less

enthusiasm in shifting from hardware to software controllers [Ger:94].

 1. Introduction 13

Formal methods have been successfully applied to the hardware verifi-

cation field; for example, parts of the Viper microprocessor22 were formally

verified, and the FM9001 microprocessor was formally verified by the Boyer

Moore theorem prover [HB:95]. There are many examples of the use of formal

methods in the railway domain, and examples dealing with the modeling and

verification of a railroad gate controller and railway signaling are described in

[HB:95]. Clearly, it is essential to verify safety critical properties such as when
the train goes through the level crossing then the gate is closed. The mandatory

use of formal methods in some safety and security-critical fields has led to for-

mal methods being employed to verify correctness in the nuclear power indus-

try, in the aerospace industry, in the security technology area, and the railroad

domain. These sectors are subject to stringent regulatory controls to ensure

safety and security.

Formal methods have been successfully applied to the telecommunica-

tions domain, and have been useful in investigating the feature interaction prob-

lem as described in [Bou:94]. The EC SCORE project considered mathematical

techniques to identify and eliminate feature interaction in the telecommunica-

tions environment. The feature interaction problem occurs when two features

that work correctly in isolation fail to work correctly together.

Formal methods have been applied to domains which have little to do

with computer science, for example, to the problem of the formal specification

of the single transferable voting system in [Pop:97], and to various organizations

and structures in [ORg:97]. There is an extensive collection of examples to

which formal methods have been applied, and a selection of these are described

in detail in [HB:95]. Formal methods have also been applied to the problem of

reuse.

1.3.3 Tools for Formal Methods

One of the main criticisms of formal methods is the lack of available or usable

tools to support the engineer in writing the formal specification or in doing the

proof. Many of the early tools were criticized as being of academic use only and

not being of industrial strength, but in recent years better tools have become

available to support the formal methods community. The expectation is that

more and more enhanced tools will continue to become available to support the

engineer’s work in formal specification and formal proof.

There are various kinds of tools employed to support the formal soft-

ware development environment, including syntax checkers to check that the

specification is syntactically correct or specialized editors to ensure that the

22 The VIPER microprocessor chip has been very controversial. It is an example of where formal

methods were oversold in that the developers RSRE (Royal Signals and Radar Establishment) of the

UK and Charter (a company licensed to exploit the VIPER results) claimed that the VIPER chip is

formally specified and the chip design conforms to the specification. However, the report by Avra

Cohen of Cambridge University’s computer laboratories argued that the claim by RSRE and Charter

was misleading. Computational Logic of the United States later confirmed Avra Cohn’s conclusions.

 14 Mathematical Approaches to Software Quality

written specification is syntactically correct; tools to support refinement; auto-

mated code generators to generate a high-level language corresponding to the

specification; theorem provers to demonstrate the presence or absence of key

properties and to prove the correctness of refinement steps, and to identify and

resolve proof obligations; and specification animation tools where the execution

of the specification can be simulated. Such tools are available from vendors like

B-Core and IFAD.

The tools are developed to support existing methods, and there is a re-

cent trend toward an integrated set of method and tools, rather than loosely cou-

pled tools; for example, the B-Toolkit from B-Core is an integrated set of tools

that supports the B-Method. These include syntax and type checking, specifica-

tion animation, proof obligation generator, an auto-prover, a proof assistor, and

code generation. Thus, in theory, a complete formal development from initial

specification to final implementation may be achieved, with every proof obliga-

tion justified, leading to a provably correct program.

The IFAD Toolbox23 is a well-known support tool for the VDM-SL

specification language, and it includes support for syntax and type checking, an

interpreter and debugger to execute and debug the specification, and a code gen-

erator to convert from VDM-SL to C++. It also includes support for graphical

notations such as the OMT/UML design notations.

SDL is a specification language which is employed in event driven real

time systems. It is an object-orientated graphical formal language, and support

for SDL is provided by the SDT tool from Telelogic. The SDT tool provides

The RAISE tools are an integrated toolset including the RAISE specifi-

cation language (RSL) and a collection of tools to support software development

including editors and translators from the specification language to Ada or C++.

There are many other tools available, including the Boyer Moore theorem

prover, the FDR tool for CSP, the CADiZ tool for the Z specification language,

the Mural tool for VDM, the LOTOS toolbox for LOTOS specifications, and the

PVS tool.

Finally, various research groups are investigating methods and tools to

assist the delivery of high-quality software. This includes a group led by Parnas

at SQRL, University of Limerick, Ireland24 that is developing a table tool sys-

tem to support tabular expressions and to thereby support engineers in specify-

ing requirements. These include tools for the creation of tables; tools to check

23 The IFAD Toolbox has been renamed to VDMTools as IFAD sold the VDM Tools to CSK in

Japan. The tools are expected to be available worldwide and will be improved further.

24 This group is being supported by Science Foundation Ireland with €5-6 million of Irish taxpay-

ers’ funds.

tions. Telelogic provides an ITEX tool which may be used with or independ-

code generation from the specification into the C or C++ programming

languages, and the generated code can be used in simulations as well as in applica-

ently of SDT. It allows the generation of a test suite from the SDL specification,

thereby speeding up the testing cycle.

1. Introduction 15

consistency and completeness properties of tables; tools to perform table com-

position and tools to generate a test oracle from a table.

Formal Methods and Reuse

Effective software reuse helps to speed up software development productivity,

and this is of particular importance in rapid application software development.

The idea is to develop building blocks which may then be reused in future pro-

jects, and this requires that the component be of high quality and reliability, that

the domains to which the component may be effectively applied be well known,

and that a documented description exists of the actual behavior of the compo-

nent and the circumstances in which it may be employed.25

Effective reuse is typically limited to a particular domain, and there are

reuse models to assist organizations that may be employed to assess or diagnose

the current reuse practices in the organization, as this enables a reuse strategy to

be developed and implemented. Systematic reuse is being researched in acade-

mia and industry, and the ROADS project was an EC funded project which in-

cluded the European Software Institute (ESI) and Thompson as partners to

investigate a reuse approach for domain-based software. The software product

line approach [ClN:02] proposed by the SEI is growing in popularity.

Formal methods have a role to play in software reuse also, as they offer

enhanced confidence in the correctness of the component and provide an unam-

biguous formal description of the behavior of the particular component. The

component may be tested extensively to provide extra confidence in its correct-

ness. A component is generally used in many different environments, and the

fact that a component has worked successfully in one situation is no guarantee

that it will work successfully in the future, as there could be potential undesir-

able interaction between it and other components, or other software. Conse-

quently, it is desirable that the behavior of the component be unambiguously

specified and fully understood, and that a formal analysis of component compo-

sition be performed to ensure that risks are minimized and that the resulting

software is of a high quality.

There has been research into the formalization of components in both

academia and industry. The EC funded SCORE research project conducted as

part of the European RACE II program considered the challenge of reuse. It in-

cluded the formal specification of components and developed a component

model. Formal methods have a role to play in identifying and eliminating unde-

sirable component interaction.

25 Parnas has noted that lots of reusable software is developed that nobody reuses. However, this is

a key challenge that companies have to face if they wish to reduce their development costs and have

faster software development. Reducing development costs and faster delivery are two key drivers in

today’s competitive environment.

 16 Mathematical Approaches to Software Quality

1.3.4 Model-Oriented Approach

There are two key approaches to formal methods: namely the model-oriented

approach of VDM or Z, and the algebraic, or axiomatic approach, which in-

cludes the process calculi such as the calculus communicating systems (CCS) or

communicating sequential processes (CSP).

A model-oriented approach to specification is based on mathematical

models. A mathematical model is a mathematical representation or abstraction

of a physical entity or system. The representation or model aims to provide a

mathematical explanation of the behavior of the system or the physical world. A

model is considered suitable if its properties closely match the properties of the

system, and if its calculations match and simplify calculations in the real system,

and if predictions of future behavior may be made. The physical world is domi-

nated by models, e.g., models of the weather system, that enable predictions of

the weather to be made, and economic models that enable predictions of the

future performance of the economy may be made.

It is fundamental to explore the model and to consider the behavior of

the model and the behavior of the real world entity. The extent to which the

model explains the underlying physical behavior and allows predictions of fu-

ture behavior to be made will determine its acceptability as a representation of

the physical world. Models that are ineffective at explaining the physical world

are replaced with new models which offer a better explanation of the manifested

physical behavior. There are many examples in science of the replacement of

one theory by a newer one: the replacement of the Ptolemaic model of the uni-

verse by the Copernican model or the replacement of Newtonian physics by

Einstein’s theories on relativity. The revolutions that take place in science are

described in detail in Kuhn’s famous work on scientific revolutions [Kuh:70].

A model is a foundation stone from which the theory is built, and from

which explanations and justification of behavior are made. It is not envisaged

that we should justify the model itself, and if the model explains the known be-

havior of the system, it is thus deemed adequate and suitable. Thus the model

may be viewed as the starting point of the system. Conversely, if inadequacies

are identified with the model we may view the theory and its foundations as

collapsing, in a similar manner to a house of cards; alternately, we may search

for amendments to the theory to address the inadequacies.

The model-oriented approach to software development involves defin-

ing an abstract model of the proposed software system. The model acts as a rep-

resentation of the proposed system, and the model is then explored to assess its

suitability. The exploration of the model takes the form of model interrogation,

i.e., asking questions and determining the effectiveness of the model in answer-

ing the questions. The modeling in formal methods is typically performed via

elementary discrete mathematics, including set theory, sequences, and functions.

The modeling approach is adopted by the Vienna Development Method

(VDM) and Z. VDM arose from work done in the IBM laboratory in Vienna in

formalizing the semantics for the PL/1 compiler, and was later applied to the

 1. Introduction 17

specification of software systems. The Z specification language had its origins in

the early 1980s at Oxford University.

VDM is a method for software development and includes a specifica-

tion language originally named Meta IV (a pun on metaphor), and later renamed

VDM-SL in the standardization of VDM. The approach to software develop-

ment is via step-wise refinement. There are several schools of VDM, including

VDM++, the object-oriented extension to VDM, and what has become known as

the Irish school of VDM, i.e., VDM , which was developed at Trinity College,

Dublin.

1.3.5 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to

satisfy, and there is no intention to produce an abstract model of the system. The

required properties and underlying behavior of the system are stated in mathe-

matical notation. The difference between the axiomatic specification and a

model-based approach is illustrated by the example of a stack. The stack is a

well-known structure in computer science, and includes stack operators for

pushing an element onto the stack and popping an element from the stack. The

properties of pop and push are explicitly defined in the axiomatic approach,

whereas in the model-oriented approach, an explicit model of the stack and its

operations are constructed in terms of the effect the operations have on the

model. The specification of an abstract data type of a stack involves the specifi-

pop(push(s,x)) = s.
The property-oriented approach has the advantage that the implemen-

ter is not constrained to a particular choice of implementation, and the only con-

straint is that the implementation must satisfy the stipulated properties. The

emphasis is on the identification and expression of the required properties of the

system and the actual representation or implementation issues are avoided, and

the focus is on the specification of the underlying behavior. Properties are typi-

cally stated using mathematical logic or higher-order logics, and mechanized

theorem-proving techniques may be employed to prove results.

 One potential problem with the axiomatic approach is that the proper-

ties specified may not be satisfiable in any implementation. Thus, whenever a

“formal theory” is developed a corresponding “model” of the theory must be

identified, in order to ensure that the properties may be realized in practice. That

is, when proposing a system that is to satisfy some set of properties, there is a

need to prove that there is at least one system that will satisfy the set of proper-

ties. The model-oriented approach has an explicit model to start with and so this

problem does not arise. A constructive approach is preferred by some groups in

formal methods, and in this approach whenever existence is stipulated construc-
tive existence is implied, where a direct example of the existence of an object

can be exhibited, or an algorithm to produce the object within a finite time

cation of the properties of the abstract data type, but the abstract data type is

not explicitly defined; i.e., only the properties are defined. The specification

of the pop operation on a stack is given by axiomatic properties, for example,

 18 Mathematical Approaches to Software Quality

period exists. This is different from an existence proof, where it is known that

there is a solution to a particular problem but there is no algorithm to construct

the solution.

1.3.6 The Vienna Development Method

VDM dates from work done by the IBM research laboratory in Vienna. Their

aim was to specify the semantics of the PL/1 programming language. This was

achieved by employing the Vienna Definition Language (VDL), taking an

operational semantic approach; i.e., the semantics of a language is determined in

terms of a hypothetical machine which interprets the programs of that language

[BjJ:78, BjJ:82]. Later work led to the Vienna Development Method (VDM)

with its specification language, Meta IV. This concerned itself with the denota-

tional semantics of programming languages; i.e., a mathematical object (set,

function, etc.) is associated with each phrase of the language [BjJ:82]. The

mathematical object is the denotation of the phrase.

VDM is a model-oriented approach and this means that an explicit

model of the state of an abstract machine is given, and operations are defined in

terms of this state. Operations may act on the system state, taking inputs, and

producing outputs and a new system state. Operations are defined in a precondi-

tion and postcondition style. Each operation has an associated proof obligation

to ensure that if the precondition is true, then the operation preserves the system

invariant. The initial state itself is, of course, required to satisfy the system in-

variant. VDM uses keywords to distinguish different parts of the specification,

e.g., preconditions, postconditions, as introduced by the keywords pre and post

respectively. In keeping with the philosophy that formal methods specifies what

a system does as distinct from how, VDM employs postconditions to stipulate

the effect of the operation on the state. The previous state is then distinguished
by employing hooked variables, e.g., v , and the postcondition specifies the

new state (defined by a logical predicate relating the prestate to the poststate)

from the previous state.

VDM is more than its specification language Meta IV (called VDM-SL

in the standardization of VDM) and is, in fact, a software development method,

with rules to verify the steps of development. The rules enable the executable

specification, i.e., the detailed code, to be obtained from the initial specification

via refinement steps. Thus, we have a sequence S = S0, S1, ..., Sn = E of specifi-

cations, where S is the initial specification, and E is the final (executable) speci-

fication. Retrieval functions enable a return from a more concrete specification,

to the more abstract specification. The initial specification consists of an initial

state, a system state, and a set of operations. The system state is a particular do-

main, where a domain is built out of primitive domains such as the set of natural

numbers, etc., or constructed from primitive domains using domain constructors

such as Cartesian product, disjoint union, etc. A domain-invariant predicate may

further constrain the domain, and a type in VDM reflects a domain obtained in

this way. Thus, a type in VDM is more specific than the signature of the type,

and thus represents values in the domain defined by the signature, which satisfy

 1. Introduction 19

the domain invariant. In view of this approach to types, it is clear that VDM

types may not be “statically type checked”.

VDM specifications are structured into modules, with a module con-

taining the module name, parameters, types, operations, etc. Partial functions

occur frequently in computer science as many functions, especially recursively

defined functions can be undefined, or fail to terminate for some arguments in

their domain. VDM addresses partial functions by employing nonstandard logi-

cal operators, namely the logic of partial functions (LPFs) which can deal with

undefined operands. The Boolean expression T ∨ ⊥ = ⊥ ∨ T = T; i.e., the truth

value of a logical or operation is true if at least one of the logical operands is

true, and the undefined term is treated as a don’t care value.

VDM is a widely used formal method and has been used in industrial

strength projects as well as by the academic community. There is tool support

available, for example, the IFAD Toolbox.26 VDM is described in detail in

Chapter 5. There are several variants of VDM, including VDM++, the object-

oriented extension of VDM, and the Irish school of the VDM, which is dis-

cussed in the next section.

1.3.7 VDM
♣

, the Irish School of VDM

The Irish School of VDM is a variant of standard VDM, and is characterized by

[Mac:90] its constructive approach, classical mathematical style, and its terse

notation. In particular, this method aims to combine the what and how of formal

methods in that its terse specification style stipulates in concise form what the

system should do; furthermore, the fact that its specifications are constructive

(or functional) means that the how is included with the what. However, it is im-

portant to qualify this by stating that the how as presented by VDM♣ is not di-

rectly executable, as several of its mathematical data types have no

corresponding structure in high-level programming languages or functional lan-

guages. Thus, a conversion or reification of the specification into a functional or

higher-level language must take place to ensure a successful execution. It should

be noted that the fact that a specification is constructive is no guarantee that it is

a good implementation strategy, if the construction itself is naive. This issue is

considered (cf. pp. 135-7 in [Mac:90]) in the construction of the Fibonacci

series.

The Irish school follows a similar development methodology as in

standard VDM and is a model-oriented approach. The initial specification is

presented, with initial state and operations defined. The operations are presented

with preconditions; however, no postcondition is necessary as the operation is

“functionally” (i.e., explicitly) constructed. Each operation has an associated

proof obligation; if the precondition for the operation is true and the operation is

performed, then the system invariant remains true after the operation. The proof

26 As discussed earlier the VDM Tools from the IFAD Toolbox are now owned by the CSK Group

in Japan.

 20 Mathematical Approaches to Software Quality

of invariant preservation normally takes the form of constructive proofs. This is

especially the case for existence proofs, in that the philosophy of the school is to

go further than to provide a theoretical proof of existence; rather the aim is to

exhibit existence constructively.

The emphasis is on constructive existence and the implication of this is

that the school avoids the existential quantifier of predicate calculus. In fact,

reliance on logic in proof is kept to a minimum, and emphasis instead is placed

on equational reasoning. Special emphasis is placed on studying algebraic struc-

tures and their morphisms. Structures with nice algebraic properties are sought,

and such a structure includes the monoid, which has closure, associativity, and a

unit element. The monoid is a very common structure in computer science, and

thus it is appropriate to study and understand it. The concept of isomorphism is

powerful, reflecting that two structures are essentially identical, and thus we

may choose to work with either, depending on which is more convenient for the

task in hand.

The school has been influenced by the work of Polya and Lakatos. The

former [Pol:57] advocated a style of problem solving characterized by solving a

complex problem by first considering an easier subproblem and considering

several examples, which generally leads to a clearer insight into solving the

main problem. Lakatos’s approach to mathematical discovery (cf. [Lak:76]) is

characterized by heuristic methods. A primitive conjecture is proposed and if

global counterexamples to the statement of the conjecture are discovered, then

the corresponding hidden lemma for which this global counterexample is a local

counter example is identified and added to the statement of the primitive conjec-

ture. The process repeats, until no more global counterexamples are found. A

skeptical view of absolute truth or certainty is inherent in this.

Partial functions are the norm in VDM , and as in standard VDM, the

problem is that recursively defined functions may be undefined, or fail to termi-

nate for several of the arguments in their domain. The logic of partial functions

(LPFs) is avoided, and instead care is taken with recursive definitions to ensure

termination is achieved for each argument. This is achieved by ensuring that the

recursive argument is strictly decreasing in each recursive invocation. The ⊥
symbol is typically used in the Irish school to represent undefined or unavailable

or do not care. Academic and industrial projects have been conducted using the

method of the Irish school, but at this stage tool support is limited.

There are proof obligations to demonstrate that the operations preserve

the invariant. Proof obligations require a mathematical proof by hand or a ma-

chine-assisted proof to verify that the invariant remains satisfied after the opera-

tion. VDM is described in detail in Chapter 6.

1.3.8 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory. It is a model-

oriented approach with an explicit model of the state of an abstract machine given,

and operations are defined in terms of this state. Its main features include a

mathematical notation which is similar to VDM and the schema calculus. The

 1. Introduction 21

latter is visually striking and consists essentially of boxes, with these boxes or

schemas used to describe operations and states. The schema calculus enables

schemas to be used as building blocks and combined with other schemas.

The schema calculus is a powerful means of decomposing a specifica-

tion into smaller pieces or schemas. This decomposition helps to ensure that a Z
specification is highly readable, as each individual schema is small in size and

self-contained. Exception handling may be addressed by defining schemas for

the exception cases, and then combining the exception schema with the original

operation schema. Mathematical data types are used to model the data in a sys-

tem, these data types obey mathematical laws. These laws enable simplification

of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style; however,

the precondition is implicitly defined within the operation; i.e., it is not sepa-

rated out as in standard VDM. Each operation has an associated proof obligation

to ensure that if the precondition is true, then the operation preserves the system

invariant. The initial state itself is, of course, required to satisfy the system in-

variant. Postconditions employ a logical predicate which relates the prestate to

the poststate, the poststate of a variable being distinguished by priming, e.g., v’.

Various conventions are employed within Z specification, for example v? indi-

cates that v is an input variable; v! indicates that v is an output variable. The Ξ
Op operation indicates that the operation Op does not affect the state; Δ Op indi-

cates that Op is an operation which affects the state.

Many of the data types employed in Z have no counterpart in standard

programming languages. It is therefore important to identify and describe the

concrete data structures which ultimately will represent the abstract mathemati-

cal structures. As the concrete structures may differ from the abstract, the opera-

tions on the abstract data structures may need to be refined to yield operations

on the concrete data which yield equivalent results. For simple systems, direct

refinement (i.e., one step from abstract specification to implementation) may be

possible; in more complex systems, deferred refinement is employed, where a

sequence of increasingly concrete specifications are produced to yield the execu-

table specification eventually.

Z has been successfully applied in industry, and one of its well-known

successes is the CICS project at IBM Hursley in the United Kingdom. Z is de-

scribed in detail in Chapter 4.

The B-Method

The B-Technologies (cf. [McD:94]) consist of three components; a method for

software development, namely the B-Method; a supporting set of tools, namely,

the B-Toolkit; and a generic program for symbol manipulation, namely, the

B-Tool (from which the B-Toolkit is derived). The B-Method is a model-

oriented approach and is closely related to the Z specification language. Every

construct in the method has a set theoretic counterpart, and the method is

founded on Zermelo set theory. Each operation has an explicit precondition, and

 22 Mathematical Approaches to Software Quality

an immediate proof obligation is that the precondition is stronger than the weak-

est precondition for the operation.

One key purpose [McD:94] of the abstract machine in the B-Method is

to provide encapsulation of variables representing the state of the machine and

operations which manipulate the state. Machines may refer to other machines,

and a machine may be introduced as a refinement of another machine. The ab-

stract machine are specification machines, refinement machines, or implement-

able machines. The B-Method adopts a layered approach to design where the

design is gradually made more concrete by a sequence of design layers, where

each design layer is a refinement that involves a more detailed implementation

in terms of abstract machines of the previous layer. The design refinement ends

when the final layer is implemented purely in terms of library machines. Any

refinement of a machine by another has associated proof obligations and proof

may be carried out to verify the validity of the refinement step.

Specification animation of the Abstract Machine Notation (AMN)

specification is possible with the B-Toolkit and this enables typical usage sce-

narios of the AMN specification to be explored for requirements validation. This

is, in effect, an early form of testing and may be used to demonstrate the pres-

ence or absence of desirable or undesirable behavior. Verification takes the form

of proof to demonstrate that the invariant is preserved when the operation is

executed within its precondition, and this is performed on the AMN specifica-

tion with the B-Toolkit.

The B-Toolkit provides several tools which support the B-Method, and

these include syntax and type checking; specification animation, proof obliga-

tion generator, auto prover, proof assistor, and code generation. Thus, in theory,

a complete formal development from initial specification to final implementa-

tion may be achieved, with every proof obligation justified, leading to a prova-

bly correct program.

The B-Method and toolkit have been successfully applied in industrial

applications and one of the projects to which they have been applied is the CICS

project at IBM Hursley in the United Kingdom. The B-Method and Toolkit have

been designed to support the complete software development process from

specification to code. The application of B to the CICS project is described in

[Hoa:95], and the automated support provided has been cited as a major benefit

of the application of the B-Method and the B-Toolkit.

1.3.9 Propositional and Predicate Calculus

Propositional calculus associates a truth-value with each proposition and is

widely employed in mathematics and logic. There are a rich set of connectives

employed in the calculus for truth functional operations, and these include A B,

A ∧ B, A ∨ B which denote, respectively, the conditional if A then B, the con-

junction of A and B, and the disjunction of A and B. A truth table may be con-

structed, and the truth values are normally the binary values of true and false.

There are other logics, for example, the logic of partial functions that is a

3-valued logic. These allow an undefined truth-value for the proposition.

 1. Introduction 23

Predicate calculus includes variables and a formula in predicate calcu-

lus is built up from the basic symbols of the language; these symbols include

variables; predicate symbols, including equality; function symbols, including the

constants; logical symbols, e.g., ∃, ∧, ∨, ¬, etc.; and the punctuation symbols,

e.g., brackets and commas. The formulae of predicate calculus are built from

terms, where a term is a key construct, and is defined recursively as a variable or

individual constant or as some function containing terms as arguments. A for-

mula may be an atomic formula or built from other formulae via the logical

symbols. Other logical symbols are then defined as abbreviations of the basic

logical symbols.

An interpretation gives meaning to a formula. If the formula is a sen-

tence (i.e., does not contain any free variables) then the given interpretation is

true or false. If a formula has free variables, then the truth or falsity of the for-

mula depends on the values given to the free variables. A free formula essen-

tially describes a relation say, R(x1,x2, .… xn) such that R(x1,x2, .… xn) is true if

(x1,x2, .… xn) is in relation R. If a free formula is true irrespective of the values

given to the free variables, then the formula is true in the interpretation.

A valuation (meaning) function is associated with the interpretation,

and gives meaning to the connectives. Thus, associated with each constant c is a

constant cΣ in some universe of values Σ; with each function symbol f, we have a

function symbol fΣ in Σ; and for each predicate symbol P a relation PΣ in Σ. The

valuation function in effect gives a semantics to the language of the predicate

calculus L. The truth of a proposition P is then defined in the natural way, in

terms of the meanings of the terms, the meanings of the functions, predicate

symbols, and the normal meanings of the connectives.

Mendelson (cf. p. 48 of [Men:87]) provides a rigorous though technical

definition of truth in terms of satisfaction (with respect to an interpretation M).

Intuitively a formula F is satisfiable if it is true (in the intuitive sense) for some

assignment of the free variables in the formula F. If a formula F is satisfied for

every possible assignment to the free variables in F, then it is true (in the techni-

cal sense) for the interpretation M. An analogous definition is provided for false

in the interpretation M.
A formula is valid if it is true in every interpretation; however, as there

may be an uncountable number of interpretations, it may not be possible to

check this requirement in practice. M is said to be a model for a set of formulae

if and only if every formula is true in M.

There is a distinction between proof theoretic and model theoretic ap-

proaches in predicate calculus. Proof theoretic is essentially syntactic, and we

have a list of axioms with rules of inference. In this way the theorems of the

calculus may be logically derived and thus we may logically derive (i.e., A)

the theorems of the calculus. In essence the logical truths are a result of the syn-

tax or form of the formulae, rather than the meaning of the formulae. Model

theoretical, in contrast is essentially semantic. The truths derive essentially from

the meaning of the symbols and connectives, rather than the logical structure of

the formulae. This is written as M A.

 24 Mathematical Approaches to Software Quality

A calculus is sound if all the logically valid theorems are true in the in-

terpretation, i.e., proof theoretic model theoretic. A calculus is complete if all

the truths in an interpretation are provable in the calculus, i.e., model theoretic

 proof theoretic. A calculus is consistent if there is no formula A such that A

and ¬A. Logic is discussed in detail in Chapter 3.

Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e., a statement that may be true

or false, and it is usually required to prove that if Q is true, where Q is the pre-

condition of a program S; i.e., ({Q} S {R}), then execution of S is guaranteed to

terminate in a finite amount of time in a state satisfying R.

The weakest precondition (cf. p. 109 of [Gri:81]) of a command S with

respect to a postcondition R represents the set of all states such that if execution

begins in any one of these states, then execution will terminate in a finite

amount of time in a state with R true. These set of states may be represented by a

predicate Q’, so that wp(S,R) = wpS (R) = Q’, and so wpS is a predicate trans-

former, i.e., it may be regarded as a function on predicates. The weakest precon-

dition is the precondition that places the fewest constraints on the state than all

of the other preconditions of (S,R). That is, all of the other preconditions are

stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness and indicates

that if execution of S commences in any state satisfying Q, and if execution ter-

minates, then the final state will satisfy R. Often, a predicate Q which is stronger

than the weakest precondition wp(S,R) is employed, especially where the calcu-

lation of the weakest precondition is nontrivial. Thus, a stronger predicate Q

such that Q wp(S,R) is sometimes employed in these cases.

There are many properties associated with the weakest preconditions

and these are used in practice to simplify expressions involving weakest precon-

ditions and in determining the weakest preconditions of various program com-

mands, e.g., assignments, iterations, etc. These are discussed in more detail in

Chapter 7. Weakest preconditions are useful in developing a proof of correctness

of a program in parallel with its development.

An imperative program may be regarded as a predicate transformer.

This is since a predicate P characterizes the set of states in which the predicate P
is true, and an imperative program may be regarded as a binary relation on

states, which may be extended to a function F, leading to the Hoare triple

P{F}Q. That is, the program F acts as a predicate transformer. The predicate P

true before the program F is executed. The Boolean expression Q is the output

assertion, and is true if the program F terminates, having commenced in a state

satisfying P.

may be regarded as an input assertion, i.e., a Boolean expression which must be

 1. Introduction 25

The Process Calculi

The objectives of the process calculi [Hor:85] are to provide mathematical mod-

els which provide insight into the diverse issues involved in the specification,

design, and implementation of computer systems which continuously act and

interact with their environment. These systems may be decomposed into sub-

systems which interact with each other and their environment. The basic build-

ing block is the process, which is a mathematical abstraction of the interactions

between a system and its environment. A process which lasts indefinitely may

be specified recursively. Processes may be assembled into systems, execute con-

currently, or communicate with each other. Process communication may be syn-

chronized, and generally take the form of a process outputting a message

simultaneously to another process inputting a message. Resources may be

shared among several processes. Process calculi enrich the understanding of

communication and concurrency, and elegant formalisms such as CSP [Hor:85]

and CCS [Mil:89] which obey a rich collection of mathematical laws, have been

developed.

 The expression (a P) in CSP describes a process which first engages

in event a, and then behaves as process P. A recursive definition is written as

(μX)•F(X) and an example of a simple chocolate vending machine is

 VMS = μX:{coin, choc}• (coin (choc X))

The simple vending machine has an alphabet of two symbols, namely,

coin and choc, and the behavior of the machine is that a coin is entered into the

machine and then a chocolate selected and provided.

CSP processes use channels to communicate values with their envi-

ronment, and input on channel c is denoted by (c?.x Px), which describes a

process that accepts any value x on channel c, and then behaves as process Px. In

contrast, (c!e P) defines a process which outputs the expression e on channel

c and then behaves as process P. CSP is discussed in more detail in Chapter 7.

The -calculus is based on names. Communication between processes

takes place between known channels, and the name of a channel may be passed

over a channel. There is no distinction between channel names and data values

in the -calculus, and this is a difference between -calculus and CCS. The out-

put of a value v on channel a is given by v; i.e., output is a negative prefix. In-

put on a channel a is given by a(x), and is a positive prefix. Private links or

restrictions are given by (x)P in the -calculus and P\ x in CCS.

1.3.10 The Parnas Way

David L. Parnas has been influential in the computing field, and his ideas on the

specification, design, implementation, maintenance, and documentation of com-

puter software remain important. He advocates a solid engineering approach to

the development of high-quality software and argues that the role of engineers is

to apply scientific principles and mathematics to design and develop useful

 26 Mathematical Approaches to Software Quality

products. He argues that computer scientists should be educated as engineers

and provided with the right scientific and mathematical background to do their

work effectively. His contributions to software engineering include:

• Tabular Expressions

Tabular expressions are the mathematical tables for specifying re-

quirements and are also used in design. They enable complex predicate

logic expressions to be represented in a simpler form.

• Mathematical Documentation

Parnas advocates the use of mathematical documents for software engi-

neering that are precise and complete.

• Requirements Specification

He advocates the use of mathematical relations to specify the require-

ments precisely.

• Software Design

His contribution to software design includes information hiding that al-

lows software to be designed for changeability. A module is character-

ized by its knowledge of a design decision (secret) that it hides from all

others. Every information-hiding module has an interface that provides

the only means to access the services provided by the modules. The in-

terface hides the module’s implementation. Information hiding27 is

used in object-oriented programming.

• Software Inspections

His approach to software inspections is quite distinct from the popular

approach of the well-known Fagan inspection methodology. The re-

viewers are required to take an active part in the inspection and they are

provided with a list of questions by the author. The reviewers are re-

quired to provide documentation of their analysis to justify the answers

to the individual questions. The inspections involve the production of

mathematical tables, and may be applied to the actual software or

documents.

• Predicate Logic

Parnas has introduced an approach to deal with undefined values in

predicate logic expressions. The approach is quite distinct from the

logic of partial functions developed by Cliff Jones.

27 I see information hiding as the greatest achievements of Parnas. I find it surprising that many in

the object-oriented world seem unaware that information hiding goes back to the early 1970s and

many have never heard of Parnas.

The Parnas approach to software engineering is discussed in Chapter 8.

 1. Introduction 27

1.3.11 Unified Modeling Language

The unified modeling language (UML) is a visual modeling language for soft-

ware systems and facilitates the understanding of the architecture of the system

and in managing the complexity of large systems. It was developed by Jim

Rumbaugh, Grady Booch, and Ivar Jacobson [Jac:99a] as a notation for model-

ing object-oriented systems.

UML allows the same information to be presented in many different

ways, and there are several UML diagrams providing different viewpoints of the

system. Use cases describe scenarios or sequences of actions for the system

from the user’s viewpoint. A simple example is the operation of an ATM ma-

chine. The typical user operations at an ATM machine include the balance in-

quiry operation, the withdrawal of cash, and the transfer of funds from one

account to another. UML includes use case diagrams to express these scenarios.

Class and object diagrams are a part of UML and the object diagram is

related to the class diagram in that the object is an instance of the class. There

will generally be several objects associated with the class. The class diagram

describes the data structure and the allowed operations on the data structure. The

concept of class and objects are taken from object-oriented design. Two key

classes are customers and accounts for an ATM system, and this includes the

data structure for customers and accounts, and also the operations on customers

and accounts. The operations include adding or removing a customer and opera-

tions to debit or credit an account. The objects of the class are the actual cus-

tomers of the bank and their corresponding accounts.

Sequence diagrams show the interaction between objects/classes in the

system for each use case. The sequences of interactions between objects for an

ATM operation to check the balance of an account is illustrated in a sequence

diagram that illustrates:

1. Customer inserts the card into the ATM machine.

2. PIN number is requested by the ATM machine.

3. The customer then enters the PIN number.

4. The ATM machine contacts the bank for verification of the num-

ber.

5. The bank confirms the validity of the number and the customer

then selects the balance inquiry.

6. The ATM contacts the bank to request the balance of the particular

account and the bank sends the details to the ATM machine.

7. The balance is displayed on the screen of the ATM machine.

8. The customer then withdraws the card.

UML activity diagrams are similar to flow charts. They are used to show the

sequence of activities in a use case and include the specification of decision

 28 Mathematical Approaches to Software Quality

branches and parallel activities. The sequence of activities for the ATM opera-

tion to check the balance of an account may be shown in an activity diagram that

illustrates:

1. Card insertion

2. Wait for PIN to be entered.

3. Validate PIN.

4. If Valid then check balance on account and Display balance.

5. Otherwise return to 1.

State diagrams (or state charts) show the dynamic behavior of a class

and how different operations result in a change of state. There is an initial state

and a final state, and the different operations result in different states being en-

tered and exited.

There are several other UML diagrams including the collaboration dia-

gram which is similar to the sequence diagram except that the sequencing is

shown via a number system. UML offers a rich notation to model software sys-

tems and to understand the proposed system from different viewpoints. The

main advantages of UML are:

Advantages of UML

State of the art visual modeling language with a rich ex-

pressive notation.

Study of the proposed system before implementation

Visualization of architecture design of the system.

Mechanism to manage complexity of a large system.

Visualization of system from different viewpoints.

Enhanced understanding of implications of user behavior.

Use cases allow description of typical user behavior.

A mechanism to communicate the proposed behavior of

the software system. This describes what it will do and

what to test against.

Table 1.4. Advantages of UML

UML is discussed in detail in Chapter 10.

Miscellaneous Specification Languages

The RAISE (Rigorous Approach to Industrial software Engineering) project was

a European ESPRIT-funded project. Its objective [Geo:91] was to produce a

method for the rigorous development of software, based on a wide-spectrum

specification language, and accompanied by tool support. It considered standard

VDM to be deficient, in that it lacked modularity, and was unable to deal with

concurrency. The RAISE specification language (RSL) is designed to address

 1. Introduction 29

these deficiencies, and an algebraic approach is adopted. Comprehensive sup-

port is available from the RAISE tools.

The RAISE method (as distinct from its specification language) covers

the software lifecycle, from requirements analysis to code generation. This is

achieved via a number of design steps, in which the specification is gradually

made more concrete, until ultimately a specification that may be transferred into

code is reached. The RAISE toolset includes library tools for storing and retriev-

ing modules and translators from subsets of RSL into Ada and C++.

The Specification and Descriptive Language (SDL) was developed to

allow the behavior of telecommunication systems to be described and specified.

It may be used at several levels of abstraction, ranging from a very broad over-

view of a system to detailed design. The behavior of the system is considered as

the combined behavior of the processes in the system, and the latter is consid-

ered to be an extended finite state machine, i.e., a finite state machine that can

use and manipulate data stored in variables local to the machine. Processes may

cooperate via signals (i.e., discrete messages) and exhibit deterministic behavior.

A graphical language is employed to describe processes and this in-

volves graphical representation of states, input, output, and decisions. Channels

enable communication between blocks (containing processes) and the system

(containing blocks connected by channels) and its environment. SDL supports

time constraints via the timer construct. The graphical language has a corre-

sponding equivalent textual representation.

SSADM is a structured systems analysis and design method. It presents

three distinct views of an information system. These include logical data struc-

tures, data flow diagrams, and entity life histories. The behavior of the system is

explained by employing a graphical language of symbols; these symbols may

indicate a one-to-many relationship, an optional occurrence, mutually exclusive

choices, etc. The method is data driven, with emphasis placed on the processes

which manipulate the data. User involvement and commitment to the develop-

ment is emphasized from the earliest stage of the project.

1.3.12 Proof and Formal Methods

court of law, the defendant is assumed innocent until proven guilty. The proof of

the guilt of the defendant may take the form of certain facts in relation to the

movements of the defendant, the defendant’s circumstances, the defendant’s

alibi, statements from witnesses, rebuttal arguments from the defense, and cer-

tain theories produced by the prosecution or defense. Ultimately, in the case of a

trial by jury, the defendant is judged guilty or not guilty depending on the extent

to which the jury has been convinced by the arguments proposed by prosecution

and defense.

A mathematical proof typically includes natural language and mathe-

matical symbols; often many of the tedious details of the proof are omitted. The

strategy of proof in proving a conjecture tends to be a divide and conquer tech-

nique, i.e., breaking the conjecture down into subgoals and then attempting to

The word proof has several connotations in various disciplines; for example, in a

 30 Mathematical Approaches to Software Quality

prove the subgoals. Most proofs in formal methods are concerned with cross-

checking on the details of the specification or validity of refinement proofs, or

proofs that certain properties are satisfied by the specification. There are many

tedious lemmas to be proved and theorem provers28 assist and are essential. Ma-

chine proof needs to be explicit and reliance on some brilliant insight is avoided.

Proofs by hand are notorious for containing errors or jumps in reasoning, as dis-

cussed in chapter one of [HB:95], while machine proofs are extremely lengthy

and unreadable, but generally help to avoid errors and jumps in proof as every

step needs to be justified.

One well-known theorem prover is the Boyer/Moore theorem prover

[BoM:79], and a mathematical proof consists of a sequence of formulae where

each element is either an axiom or derived from a previous element in the series

by applying a fixed set of mechanical rules. There is an interesting case in the

literature concerning the proof of correctness of the VIPER microprocessor29

[Tie:91] and the actual machine proof consisted of several million formulae.

 Theorem provers are invaluable in resolving many of the thousands of

proof obligations that arise from a formal specification, and it is not feasible to

apply formal methods in an industrial environment without the use of machine

assisted proof. Automated theorem proving is difficult, as often mathematicians

prove a theorem with an initial intuitive feeling that the theorem is true. Human

intervention to provide guidance or intuition improves the effectiveness of the

theorem prover.

The proof of various properties about the programs increases confi-

dence in the correctness of the program. However, an absolute proof of correct-

ness is unlikely except for the most trivial of programs. A program may consist

of legacy software which is assumed to work, or be created by compilers which

are assumed to work; theorem provers are programs which are assumed to func-

tion correctly. In order to be absolutely certain one would also need to verify the

hardware, customized-off-the-shelf software, subcontractor software, and every

single execution path that the software system will be used for. The best that

formal methods can claim is increased confidence in correctness of the software.

1.4 Organization of This Book

This chapter provided an introduction to an engineering approach to software

quality that places emphasis on the use of mathematics. It included a review of

the popular formal methods in the literature. The second chapter considers the

mathematical foundation that is required for sound software engineering. The

mathematics discussed includes discrete mathematics such as set theory, func-

tions and relations; propositional and predicate logic for software engineers;

28 Most existing theorem provers are difficult to use and are for specialist use only. There is a need

to improve the usability of theorem provers.

29 As discussed earlier this verification was controversial with RSRE and Charter overselling

VIPER as a chip design that conforms to its formal specification.

 1. Introduction 31

tabular expressions ain software engineering; probability and applied statistics

for predicting software reliability; calculus and matrix theory; finite state ma-

chines; and graph theory.

Chapter 3 is a detailed examination of mathematical logic including

propositional and predicate calculus, as well as considering ways of dealing with

undefined values that arise in specification. The next three chapters are con-

cerned with the model-oriented approach of formal specification. The chapter on

Z includes the main features of the Z specification language as well as the

schema calculus. The chapter on VDM describes the history of its development

at the IBM research laboratory in Vienna, as well as the main features of VDM-

SL. The chapter on VDM explains the philosophy of the Irish school of VDM,

and explains how it differs from standard VDM. The two most widely used for-

mal specification languages are Z and VDM.

Chapter seven discusses the contribution of Dijkstra and Hoare includ-

ing the calculus of weakest preconditions developed by Dijkstra, and the axio-

matic semantics of programming languages developed by Hoare. Chapter eight

discusses the classical engineering approach of Parnas, and includes material on

tabular expressions, requirements specification and design, and software inspec-

tions.

Chapter 9 examines the Cleanroom approach of Harlan Mills and the

mathematics of software reliability. Cleanroom enables a mathematical predic-

tion of the software reliability to be made based on the expected usage of the

software. The software reliability is expressed in terms of the mean time to fail-

ure (MTTF). Chapter 10 examines the unified modeling language (UML). This

is a visual approach to the specification and design of software. The final chap-

ter examines technology transfer of formal methods to an organization.

1.5 Summary

Software engineering involves multiperson construction of multiversion pro-

grams. Software engineers need to receive an appropriate engineering education

in mathematics and design in order to be able to build high-quality and safe

products. Computer science courses tend to include a small amount of mathe-

matics, whereas mathematics is a significant part of an engineering course. The

engineering approach to the teaching of mathematics is to emphasize its applica-

tion and especially the application to developing and analyzing product designs.

The mathematics that software engineering students need to be taught includes

sets, relations, functions, mathematical logic, tabular expression, and finite state

machines. The emphasis is on the application of mathematics to solve practical

problems.

Sound software engineering requires the engineer to state precisely the

requirements that the software product is to satisfy and then to produce designs

that will meet these requirements. Software engineers should start with a precise

description of the problem to be solved; then proceed to producing a design and

 32 Mathematical Approaches to Software Quality

validating the correctness of the design; finally, implementation and testing are

performed. An engineering analysis of the design includes mathematics and

software inspections, and this is essential to ensure the correctness of the design.

Software engineers have individual responsibilities as professionals.

They are responsible for designing and implementing high-quality and reliable

software that is safe to use. They are also accountable for their own decisions

and actions and have a responsibility to object to decisions that violate profes-

sional standards. Professional engineers have a duty to their clients to ensure

that they are solving the real problem of the client. They need to precisely state

the problem before working on its solution. Engineers need to be honest about

current capabilities when asked to work on problems that have no appropriate

technical solution rather than accepting a contract for something that cannot be

done.

Formal specifications describe in a precise way the requirements of a

proposed system. The objective is to specify the program in a mathematical lan-

guage and to demonstrate that certain properties are satisfied by the specification

using mathematical proof. The ultimate objective is to provide confidence that

the implementation satisfies the requirements. Formal methods offers increased

precision but cannot provide a guarantee of correctness.

The formal methods community have developed a comprehensive col-

lection of methods and tools to assist in the formal specification of software and

to prove properties of the software. These include the well-known model based

approaches such as VDM and Z, and the axiomatic approaches of Dijkstra and

Hoare. The safety-critical field is a domain to which formal methods are quite

suited, as they may be applied to verify that stringent safety and reliability prop-

erties hold. Tool support is essential for formal methods to be taken seriously by

industrialists, and better tools have been provided in recent years by organiza-

tions such as B-Core and IFAD.

The role of proof in formal methods was discussed, and tool support is

essential for industrial proof. The proofs include invariant preservation of opera-

tions and the proof of validity of the refinement step. However, the first step in

implementing formal methods is to consider formal specification, and the use of

mathematical proof and theorem provers belongs to a more advanced deploy-

ment of formal methods. The mathematics for software engineering is described

in the next chapter.

2

Software Engineering Mathematics

2.1 Introduction

The ability to use mathematics is a differentiator between engineers and techni-

cians. Engineers are taught practical mathematics and apply their mathematical

knowledge to solve practical problems, whereas the technician’s mathematical

education is more limited. The classical engineer applies mathematics and

mathematical models to the design of the product, and a classical engineering

analysis of the design is a mathematical activity.

 The advantage of mathematics is that it allows rigorous analysis and

avoids an overreliance on intuition. Mathematics provides precise unambiguous

statements, and the mathematical proof of a theorem provides a high degree of

confidence in its correctness. The focus in engineering is on mathematics that

can be applied to solve practical problems and in developing products that are fit

for use, whereas the interest of the pure mathematician is in mathematics for its

own sake. The emphasis in engineering is always in the application of the theo-

rem rather than in the proof, and the objective of engineering mathematics is to

teach students on using and applying mathematics to program well and to solve

practical problems.

 Many programming courses treat the mathematics of programming as if

it is too difficult or irrelevant to the needs of computer science students. Instead,

many programming courses often focus on teaching the latest programming lan-

guage rather than in placing the emphasis on the design of useful products.

Some advocate commencement of programming prior to understanding of prob-

lem and this is clearly wrong from a classical engineering viewpoint. It is impor-

tant to teach students problem-solving skills such as formulating the problem;

decomposing a problem into smaller problems; and integrating the solution.

The mathematics discussed in this chapter includes discrete mathemat-

ics; set theory; functions; relations; graph theory; calculus; logic; tabular expres-

sions; numerical analysis; probability, and applied statistics.

 34 Mathematical Approaches to Software Quality

2.2 Set Theory

A set is a collection of well-defined objects that contains no duplicates. For ex-

ample, the set of natural numbers Ν is an infinite set consisting of the numbers

1, 2, …, and so on. Most sets encountered in computer science are finite as

computers can only deal with finite entities. Set theory is a fundamental build-

ing block of mathematics and is familiar to all high-school students. Venn dia-

grams are often employed to give a pictorial representation of a set and the

various set operations.

 A

The elements of a finite set S are denoted by {x1,x2, ... xn}. The expression

x∈ S denotes set membership and indicates that the element x is a member of the

set S. A set S is a subset of a set T (denoted S ⊆ T) if whenever s ∈ S then s ∈
T. The set T is a superset of a set S if S ⊆ T.

The Cartesian product of sets S and T (denoted S × T) is the set of ordered

pairs {(s,t) | s ∈ S, t ∈T}. Clearly, S × T ≠ T × S and so the Cartesian product is

not commutative. The Cartesian product may be extended to n sets S1, S2, ..., Sn

and S1 × S2× .. × Sn is the set of ordered tuples {(s1, s2, ..., sn) | s1∈ S1, s2∈ S2, ..,

sn ∈ Sn}. The Cartesian product allows new sets to be created from existing sets.

It is named after the French mathematician Descartes.

A new set may be created from an existing set by the use of a predicate to

restrict membership of the set. For example, the even natural numbers are given

by {x | x ∈ΝΝ ∧ even(x)}. In this example, even(x) is a predicate that is true if x is

even and false otherwise. In general, A = {x ∈E | P(x)} denotes a set A formed

from a set E using the predicate P.

The power set of a set A (denoted A) denotes the set of subsets of A.

There are 2|A| elements in the power set of A. For example, the power set of the

set A = {1,2,3} has 8 elements and is given by:

A = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.

The empty set is denoted by ∅ and clearly ∅ is a subset of every set. Two

sets A and B are equal if they contain identical elements: i.e., A = B if and only

if A ⊆ B and B ⊆ A. The singleton set containing just one element x is denoted

by {x}, and clearly x ∈ {x} and x ≠ {x}. Clearly, y ∈ {x} if and only if x = y.

The union of two sets A and B is denoted by A ∪ B. It results in a set that

contains all the members of A and of B. It is given by:

A ∪ B = {r | r ∈ A or r ∈ B}.

a

b

 2. Software Engineering Mathematics 35

For example, suppose A = {1,2,3} and B = {2,3,4} then A ∪ B =

{1,2,3,4}. Set union is a commutative operation. The intersection of two sets A

and B is denoted by A ∩ B. It results in a set containing the elements that A and

B have in common. It is given by:

A ∩ B = {r | r ∈ A and r ∈ B}.

Suppose A = {1,2,3} and B = {2,3,4} then A ∩ B = {2,3}. Set intersection

is a commutative operation. The set difference operation A \ B yields the ele-

ments in A that are not in B. It is given by

A \ B = {a | a ∈ A and a ∉ B}.

For A and B above, A \ B = {1} and B \ A = {4}. Clearly, set difference is

not commutative. The symmetric difference of two sets A and B is denoted by A

B and is given by:

A B =A \ B ∪ B \ A.

The symmetric difference operation is commutative. The following illus-

trates some of the set theoretical operations using Venn diagrams.

 A B A B A B A B

 A ∪ B A \ B B \ A A ∩ B

The complement of a set A (with respect to the universal set U) is given by

Ac. This is given by:

Ac = {u | u ∈ U and u ∉ A}.

The complement of the set A is illustrated by the shaded area below and Ac

is simply U \ A.

 U

 Ac

A

 36 Mathematical Approaches to Software Quality

Next, various properties of set union and set intersection operators are

considered. These operators are associative, commutative, and distribute over

each other. These properties are listed below:

Property Description

Commutative Union and intersection operations are commu-

tative: i.e.,

 S ∪ T = T ∪ S

 S ∩ T = T ∩ S

Associative Union and intersection operations are associa-

tive: i.e.,

 R ∪ (S ∪ T) = (R ∪ S) ∪ T

 R ∩ (S ∩ T) = (R ∩ S) ∩ T

Identity The identity under set union is ∅ and the iden-

tity under intersection is U.

 S ∪ ∅ = S = ∅ ∪ S

 S ∩ U = S = U ∩ S

Distributive The union operator distributes over the inter-

section operator and vice versa. E.g.,

 R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

 R ∪ (S ∩ T) = (R ∪ S) ∩ (R ∪ T).

De Morgan’s Law The complement of S ∪ T is given by:

 (S ∪ T)c = S c ∩ T c

The complement of S ∩ T is given by:

 (S ∩ T)c = S c ∪ T c

Table 2.1. Properties of Set Operations

Union and intersection are binary operations but can be extended to gen-

eralized union and intersection operations, for example, n
i=1Ai denotes the in-

tersection of n sets, and n
i=1Ai denotes the union of n sets. De Morgan’s law is

named after the 19th century English mathematician Augustus De Morgan.1

There are many well-known examples of sets including the set of natural

numbers that is denoted by N; the set of integers is denoted by Z; the set of ra-

tional numbers is denoted by Q; the set of real numbers is denoted by R; and the

set of complex numbers is denoted by C.

1 De Morgan introduced the term mathematical induction and is well-known for his work on

mathematical logic. He corresponded with Sir Rowan Hamilton (the Irish mathematician who dis-

covered Quaternions), George Boole (one of the fathers of computing and well known for Boolean

algebra, Charles Babbage (one of the fathers of computing and well known for his work on the de-

sign and drawings of the analytic engine which was a calculating machine that was to be the fore-

runner of the modern computer), and Lady Ada Lovelace who in a sense was the first programmer

with her ideas that the analytic engine may potentially be employed to produce graphics or solve

scientific problems.

 2. Software Engineering Mathematics 37

2.3 Relations

A binary relation R (A,B), where A and B are sets, is a subset of A × B. The do-

main of the relation is A and the co-domain of the relation is B. The notation

aRb signifies that (a,b) ∈R. An n-ary relation R (A1,A2,…An) is a subset of (A1 ×
A2 × … × An). However, an n-ary relation may also be regarded as a binary rela-

tion R(A,B) with A = A1 × A2 × … × An-1 and B = An. A relation R(A, A) is a rela-

tion on A. There are many examples of relations: for example, the relation on a

set of people where (a,b) ∈ R if the height of a is greater than or equal to the

height of b. A relation R(A,B) may be expressed pictorially as described below.

The arrow from a to p and from a to r indicates that (a,p) and (a,r) are in the

relation R. Thus the relation R is given by {(a,p), (a,r), (b,q)}.

A B

A relation on a set A is reflexive if (a,a) ∈ R for all a ∈ A. A relation R

is symmetric if whenever (a,b) ∈ R then (b,a) ∈ R. A relation is transitive if

whenever (a,b) ∈ R and (b,c) ∈ R then (a,c) ∈ R. A relation that is reflexive,

symmetric and transitive is termed an equivalence relation.

An equivalence relation on A gives rise to a partition of A where the

equivalence classes are given by Class(a) = {x | x ∈ A and (a,x) ∈ R}. Similarly,

a partition gives rise to an equivalence relation R, where (a,b) ∈ R if and only if

a and b are in the same partition.

The relation below is reflexive, i.e., for each a ∈A then (a,a) ∈ R.

Symmetric and transitive relations may be illustrated pictorially also.

R

Fig. 2.1. Reflexive Relation

The domain of a relation R (A,B) is given by {a ∈A | ∃b ∈B and (a,b)

∈R}. It is denoted by dom R. The domain of the relation R = {(a,p), (a,r), (b,q)}

is {a,b}.The range of a relation R (A, B) is given by {b ∈B | ∃a ∈A and (a,b)

∈R}. It is denoted by rng R. The range of the relation R = {(a,p), (a,r), (b,q)} is

{p, q, r}.

a

b

p

q

r

c

 a

 b

 38 Mathematical Approaches to Software Quality

The composition of two relations R1(A,B) and R2(B,C) is given by R2 o

R1 where (a,c) ∈ R2 o R1 if and only there exists b ∈ B such that (a,b) ∈R1 and

(b,c) ∈ R2. The composition of relations is associative: i.e.,

(R3o R2) o R1 = R3 o (R2 o R1)

The union of two relations R1(A,B) and R2(A,B) is meaningful as these

are both subsets of A × B. It is given by R1 ∪ R2 where (a,b) ∈ R1 ∪ R2 if and

only if (a,b) ∈ R1 or (a,b) ∈ R2. Similarly, the intersection of R1 and R2 is mean-

ingful and is given by R1 ∩ R2 where (a,b) ∈ R1 ∩ R2 if and only if (a,b) ∈ R1

and (a,b) ∈ R2. The relation R1 is a subset of R2 (R1 ⊆ R2) if whenever (a,b) ∈
R1 then (a,b) ∈ R2. The inverse of the relation R is given by the relation R-1

where:

 R-1= {(b,a) | (a,b) ∈ R}.

The composition of R and R-1 yields: R-1 o R = {(a,a) | a ∈ dom R} and R o R-1

= {(b,b) | b ∈ dom R-1 }. Given a relation R on A then R2 = R o R is a relation on
n n

times). The transitive closure of the relation R on A is given by:

 R* = ∪∞
i=0 Ri = R0 ∪R1 ∪R2 ∪ ... Rn∪ ...

where R0 is the reflexive relation containing only each element in the domain of

R: i.e., R0 = {(a,a) | a ∈ dom R}. The positive transitive closure is similar to the

transitive closure except that it does not contain R0. It is given by:

 R+ = ∪∞
i=1 Ri = R1 ∪R2 ∪ ... Rn∪ ...

Parnas has introduced the limited domain relation (LD-relation) where a LD

relation L consists of an ordered pair (RL, CL) where RL is a relation and CL is a

subset of Dom RL. The relation RL is on a set U. CL is termed the competence set

of the LD relation L. A description of LD relations and a discussion of their

properties is in chapter two of [Par:01].

The LD relations may be used to describe programs. The relation component

of the LD relation L describes a set of states such that if execution starts in state

x it may terminate in state y. The set U is the set of states. The competence set of

L is such that if execution starts in a state that is in the competence set then its

termination is guaranteed.

2.4 Functions

A function f:A →B is a special relation such that for each element a ∈A there is

exactly one element b ∈B. This is written as f (a) = b. The domain of the func-

A. This can be generalized to a relation R on A where R = R o R o … o R

(n-

 2. Software Engineering Mathematics 39

tion (denoted by dom f) is the set of values in A for which the function is de-

fined. The domain of the function is A provided that f is a total function. The co-

domain of the function is B. The range of the function (denoted rng f) is a subset

of the co-domain and consists of:

rng f ={r | r ∈ B such that f(a) = r for some a ∈ A}.

Functions may be partial or total. A partial function may be undefined

for values of A. Total functions are defined for every value in A. Functions are

an essential part of mathematics and computer science, and examples of useful

functions include the trigonometric functions, logarithmic, and exponential.

 Partial functions arise in computer science as a program may be unde-

fined or fail to terminate for some values of its arguments. Care is required to

ensure that the partial function is defined for the argument to which it is to be

applied. Total functions are defined everywhere for all of their arguments. Two

functions f and g are equal if:

1. dom f = dom g

2. f (a) = g(a) for all a ∈ dom f.

A function f is less defined than a function g (f ⊆ g) if the domain of f is

a subset of the domain of g and the functions agree for every value on the do-

main of f :

1. dom f ⊆ dom g

2. f(a) = g(a) for all a ∈ dom f.

The composition of functions is similar to the composition of relations.

Suppose f: A →B and g: B →C then g o f : A →C is a function and for x ∈ A

this is written as g o f(x) or g(f(x)). Consider the function f : R R such that

f(x)= x2 and the function g:R R such that g(x) = x+2. Then g o f(x) = g (x2) =

x2+ 2. However, f o g(x) = f (x+2)= (x+2)2 x2+ 2.

Hence, composition of functions is not commutative. The composition

of functions is associative, for example, consider f: A →B, g: B →C, and h:

C→D, then

h o (g o f) = (h o g) o f.

A function f : A →B is injective (one to one) if f(a1) = f (a2) a1 = a2. For

example, consider the function f: R →R with f (x) = x2. Then f (3) = f (-3) = 9

and so f is not one to one.

A function f: A →B is surjective (onto) if given any b ∈ B there exists a ∈ A

such that f(a) = b. Consider the function f: R →R with f (x) = x+1. Clearly,

given any r ∈ R then f (r-1) = r and so f is onto. A function is bijective if it is

one to one and onto.

 40 Mathematical Approaches to Software Quality

 A B A B

 1-1, Not Onto Onto, Not 1-1

The inverse of a relation was discussed in section 2.4 and the relational

inverse of a function f: A →B clearly exists. The relational inverse of the func-

tion may or may not be a function. However, if the relational inverse is a func-

tion it is denoted by f-1 : B →A. A total function has an inverse if and only if it is

bijective.

The identity function 1A : A →A is a function such that 1A(a) = a for all a ∈
-1 o f = 1A and f- o f-1=

1B. Further information on sets, relations, and functions is available in [Pif:91].

2.5 Logic

The first formal logic (syllogistic logic) in Western civilization was invented by

Aristotle2 [Ack:94] in the 4th century B.C. This logic could handle terms only

and these include the subject and predicate of propositions. The propositional

calculus allows a truth-value to be associated with each proposition and is
widely employed in mathematics and logic. There are a rich set of connectives

employed in the calculus for truth functional operations, and these include A

B, A ∧ B, A ∨ B which denote, respectively, the conditional if A then B, the con-
junction of A and B, and the disjunction of A and B. A truth table of the logical

operations may be constructed, and this details the truth values that result from

the operation depending on the Boolean values of the constituent propositions.
Propositional logic is the classical two valued logic and there are two possible

Boolean values (i.e., true and false). There are other logics also: for example, the

3-valued logics, in which the propositions may have three truth-values, namely
true, false, and undefined. Undefined values are discussed further in Chapter 3.

 The propositional calculus is widely employed in computer science.
Every program uses logic extensively: for example, the Boolean condition in an

if then else statement determines whether a particular statement will be executed

2 Aristotle was a Greek philosopher. He was a pupil of Plato but later founded his own school of

philosophy. His writings on philosophy are extensive including metaphysics, epistemology, aesthet-

ics, logic, ethics, biology, and politics.

a

b

p

q

r

a

b

c

p

q

A. Clearly, when the inverse of the function exists then f

 2. Software Engineering Mathematics 41

or not; similarly, the Boolean condition in a while statement determines whether

there will be another iteration of the loop.
 There are many well-known properties of the propositional calculus.

These include properties such as A ∧ F = F and A ∧ T = A; A∨ T = T and A∨ F

= A. The ∧ and ∨ operators are idempotent; i.e., the following properties are
true:

A ∧ A = A.

 A ∨ A = A.

The ∧ operator distributes over the ∨ operator and vice-versa:

 A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).

The ∧ and ∨ operators are associative:

 A ∧ (B ∧ C) = (A ∧ B) ∧ C.

A ∨ (B ∨ C) = (A ∨ B) ∨ C.

De Morgans Law holds for the ∧ and ∨ operators:

 ¬(A∨ B) = ¬A ∧ ¬B.

¬(A∧ B) = ¬A ∨ ¬B.

A formula in predicate calculus is built up from the basic symbols of

the language; these symbols include variables; predicate symbols, including

equality; function symbols, including the constants; logical symbols, e.g., ∃, ∧,

∨, ¬, etc.; and the punctuation symbols, e.g., brackets and commas. The formu-
lae of predicate calculus are then built from terms, where a term is a key con-

struct, and is defined recursively as a variable or individual constant or as some
function containing terms as arguments. A formula may be an atomic formula or

built from other formulae via the logical symbols. Other logical symbols are

then defined as abbreviations of the basic logical symbols.
The predicate calculus is widely employed in computer science. Often,

the definition of a function is piecewise where the domain of the function is par-

titioned and each partition is given by constraints expressed in predicate logic.
One problem that arises is how to deal with undefined terms that may

occur in predicate calculus expressions. Jones [Jon:90] has proposed the logic of
partial functions, which is a 3-valued logic. Parnas has developed a theory that

deals with undefinedness using a classical 2-valued logic. Dijkstra’s cand and

cor operators also deal with undefinedness. Undefinedness is discussed further
in Chapter 3.

 42 Mathematical Approaches to Software Quality

2.6 Tabular Expressions

Tables of constants have been used for millennia to define mathematical func-

tions (e.g., the Plimpton3 322 cuneiform tablet from the Babylonians c. 1900

B.C.) Such tables4 are used to present data in an organized and more easily ref-

erenced form.

Tabular expressions are a generalization of tables in which constants

can be replaced by more general mathematical expressions. Conventional

mathematical expressions are a special case of tabular expressions. Tabular ex-

pressions can represent sets, relations, functions, and predicates. In fact, every-

thing that can be expressed as a tabular expression can be represented by a

conventional expression. However, the advantage is that the tabular expression

is usually easier to read and use than a conventional expression.5 A complex

conventional mathematical expression is replaced by a set of much simpler ex-

pressions. Tabular expressions have been applied to precisely document system

requirements.

Consider a function f(x,y) defined piecewise as follows:

f(x,y) = 0 where x ≥ 0 ∧ y = 10;

f(x,y) = y2 where x ≥ 0 ∧ y > 10;

f(x,y) = -y2 where x ≥ 0 ∧ y < 10;

f(x,y) = x where x <0 ∧ y =10;

f(x,y) = x+y where x <0 ∧ y >10;

f(x,y) = x-y where x <0 ∧ y < 10.

One problem with a definition in this form is that care is required to en-

sure that all cases are considered in the definition as it is easy to miss a case.

Consider, an equivalent representation of the function represented as a tabular

expression. Then it is very easy to verify that all cases are considered as this is

clear from an examination of the headers of the table.

The evaluation of the function for a particular (x,y) involves determin-

ing the appropriate row and column from the headers of the table and computing

the grid element for that row and column. For example, the evaluation of f(2,3)

involves the selection of row 1 of the grid (as x = 2 ≥ 0 in H1) and the selection

of column 3 (as y = 3 < 10 in H2). Hence the value of f(2,3) is given by the ex-

pression in row 1 and column 3 of the grid: i.e., -y2 evaluated with y =3 resulting

in –9. The table simplifies the definition of the function.

3 The Plimpton 322 tablet was discovered in Iraq and now resides in Columbia University. It is a

clay table with 15 rows and 4 columns. The entries in the table are in the Babylonian sexigesimally

(base 60) notation and the table has been translated to Decimal notation. Further information is on

http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html.

4 Tables are used extensively in today’s society: e.g., bus and train timetables, examination timeta-

bles, logarithmic tables, sine and cosine tables, etc.

5 I acknowledge that some of the tabular expressions are not for the faint-hearted.

 2. Software Engineering Mathematics 43

 y =10 y > 10 y < 10

x ≥ 0 0 y2 -y2

x < 0 x x+y x-y

Fig. 2.2. Tabular Expression (Normal Table)

2.7 Probability and Applied Statistics

The probability of an event occurring is an indication of how likely the event is

to occur. Probability theory6 provides a mathematical indication of the likeli-

hood of the event occurring and the mathematical probabilities range between 0

and 1. A probability of 0 indicates that the event cannot occur whereas a prob-

ability of 1 indicates that the event is guaranteed to occur. A probability value

greater than 0.5 indicates that the event is more likely to occur than not to occur.

A sample space is the set of all possible outcomes of an experiment and

an event E is a subset of the sample space. The probability of the union of dis-

joint events is the sum of their individual probabilities: i.e.,

P(∪ n
i=1Ei) = Σn

i=1P(Ei).

The probability of the union of two events (not necessarily disjoint) is

given by:

P(E∪F) = P(E) + P(F) - P(E F).7

The probability of an event E not occurring is denoted by Ec and is

given by 1 – P(E). The probability of an event E occurring given that an event F

has occurred is termed conditional probability (denoted by P(E|F)) and is given

by:

P(E|F) = P(EF) / P(F).

Bayes formula enables the probability of an event E to be determined

by a weighted average of the conditional probability of E given that the event F

occurred and the conditional probability of E given that F has not occurred:

P(E) = P(E|F)P(F) + P(E|Fc)P(Fc).

6 The history of probability theory dates back to the 17th Century and arose out of a gambling dis-

pute. The dispute involved Chevalier De Mére who drew Pascal’s attention to an apparent contra-

diction in a roll of a pair of dice. Pascal and Fermat investigated further and the theory of probability

was born.

7 E F is denoted by EF.

GH1

H

 44 Mathematical Approaches to Software Quality

Two events E, F are independent if knowledge that F has occurred does not

change the probability that E has occurred. Two events E, F are independent if:

P(EF) = P(E)P(F).

 Often, some numerical quantity determined by the result of the experi-

ment is of interest rather than the result of the experiment itself. These numeri-

cal quantities are termed random variables. A random variable is termed discrete

if it can take on a finite or countable number of values; otherwise it is termed

continuous. The distribution function is the probability that the random variable

X takes on a value less than or equal to x. It is given by:

 F(x) = P(X ≤ x).

 The probability mass function p(a) of X is given by:

p(a) = P{X = a}.

A random variable is continuous if there exists a function f such that:

 P{X ∈ B} = B f(x) dx.

The function f is termed the probability density function and d/da F(a) = f(a).

The expected value (i.e., mean) of a discrete random variable X (de-

noted E[X]) is given by the weighted average of the possible values of X:

E[X] = i xi P{X =xi} discrete random variable.

= ∞
-∞ xf(x) dx continuous random variable.

Further, E[g(X)] = i g(xi)P{X=xi} and ∞
-∞ g(x)f(x) dx for the discrete

and continuous case respectively. The variance of a random variable (i.e., spread

of values from mean) is given by:

Var(X) = E[X2] – (E[X])2.

The standard deviation () is given by √Var(X). The covariance of two

random variables X,Y is given by:

Cov(X,Y) = E[XY] - E[X]E[Y].

 2. Software Engineering Mathematics 45

A positive covariance (Cov(X,Y) ≥ 0) indicates that Y tends to increase

as X does whereas a negative covariance indicates that Y tends to decrease as X

increases. The correlation of two random variables (Corr(X,Y)8) is given by:

 Corr(X,Y) = Cov(X,Y) / √(Var(X)Var(Y)).

There are a number of special random variables and these include a Bernouilli

trial where there are two possible outcomes from an experiment: i.e., success or

failure:

P{X = 0} = 1-p.

P{X = 1} = p.

The mean is given by p and the variance by p(1-p). The Binomial Distribution

involves n Bernouilli trials, each of which results in success or fail:

P{X = i} = (n
i) p

i (1-p)n-i

with the mean of the Bernouilli random variable given by np and the variance by

np(1-p).

The Poisson distribution may be used as an approximation for the Bi-

nomial when n is large and p is small. A Poisson random variable is given by:

P{X = i} = e-λ λi / i!

with the mean and variance of the Poisson Distribution given by λ.

There are many other well-known random variables such as:

Distribution Name Density Funtion Mean / Variance

Hypergeometric P{X = i} = (N
i) (

M
N-i) / (

N
i
+M);

Uniform f(x) = 1/(β-α) α≤x≤β, 0 (α+β)/2, (β-α)2/12

Exponential f(x) = λe-λx 1/λ, 1/λ2

Normal f(x) = 1 / √2πσ[e-(x-μ)2 /2σ2] μ , σ2

Table 2.2. Probability Distributions

A good account of probability and statistics is in [Ros:87]. Probability

theory has been applied to develop software reliability predictors of the mean

time to failure (MTTF) or the mean time between failure (MTBF).

8 The correlation of two random variables has a value between ± 1.

 46 Mathematical Approaches to Software Quality

2.8 Calculus

Calculus was discovered independently by Newton and Leibnitz in the 17th cen-

tury.9 This section provides a brief introduction to some of the essential con-

cepts in Calculus. The concept of the limit of a function is fundamental and the

limit of a function f at x = a (denoted by limx →a f (x)) is said to be l if given ε >

0 there exists δ > 0 such that | f (x) - l | < ε when |x - a | < δ. The limit of a func-

tion exists if and only if the left hand and right hand limit of the function exists.

The left hand limit is denoted by limx →a- f (x) and the right hand limit is given

by limx →a+ f (x).

The function f is continuous at x = a if the limit of the function f exists and is

equal to f (a): i.e., given ε > 0 there exists δ > 0 such that | f (x) – f(a) | < ε when

|x - a | < δ. The derivative of a function y = f (x) is given by:

 limh→0 f (x+h) - f(x) / h.

The derivative of a function y = f(x) is denoted by dy/dx or by f’(x). A

function f that has a derivative at x =a is continuous at a. The interpretation of

the derivative of a real valued continuous function f at x = a is the slope of the

curve at x=a. There are many well-known rules of derivatives:

d/dx (f(x) + g(x)) = f’ (x) + g’(x).
d/dx (f(x) * g (x)) = f’ (x)*g(x) + f(x)*g’ (x).
d/dx (f o g(x)) = f’ (g(x))*g’ (x).

The derivative of a constant is zero: i.e., d/dx k = 0; the derivative of a func-

tion that is a power of x is given by: d/dx xn = nxn-1 ; the derivative of the sine

function is: d/dx Sin x = Cos x; and the derivative of the cosine function is: d/dx

Cos x = - Sin x.

The derivative of the function f is positive when f is an increasing function

and negative when f is a decreasing function. A function attains a local maxi-

mum when dy/dx = 0 and d2y / dx2 < 0. dy/dx = 0

and d2y / dx2 > 0.

The integral of a function is essentially the inverse of the derivative of the

function: i.e., f’(x)dx = f(x) + k. There are many well-known properties of the

integral operator:

 (f(x) + g(x))dx = f(x) dx + g(x) dx.

f g’ (x)dx = f (x)g(x) + f’ (x)g(x)dx.

9 There is some evidence that Indian mathematicians in Kerala in India were already familiar with

Calculus 300 years before Newton and Leibnitz.

 It attains a local minimum when

 2. Software Engineering Mathematics 47

The interpretation of the integral a
b f(x)dx is the area under the curve f(x) be-

tween a and b. The following are well-known examples:

 xn dx = xn+1/(n+1) + k.

 Sin x dx = - Cos x + k.

 Cos x dx = Sin x + k.

Many well-known functions (e.g., the Trigonometric sine and cosine func-

tions) can be expressed as a Taylor power series of x. The Taylor series of a

function f about x = a is given by:

f(x)= f(a) + (x-a)f’(a) + 1/2(x-a)2!f’’(a) + ……+ 1/n! (x-a)nf n(a)+…..

The Taylor series requires the function to be infinitely differentiable and the

convergence of the power series needs to be considered.

The application of calculus is extensive in physics and engineering. Space

does not permit a more detailed description and the reader is referred to texts

(e.g., Boa:66] that describe the richness of calculus including ordinary and par-

tial differential equations; Fourier Series; and Laplace transforms.

2.9 Matrix Theory

Matrices10 arose in practice as a means of solving a set of linear equations. For

example, consider the set of equations:

ax + by = r.

 cx + dy = s.

Then the coefficients of the linear equations may be represented by the matrix A

= (a
c

b
d) and the equations may be represented as the multiplication of a matrix A

and a vector x = (x
y) resulting in a vector v = (r

s): i.e., Ax = v. The vector x may

be calculated by determining the inverse of the matrix A (provided that the in-

verse of A exists) and calculating x = A-1v.

The inverse of a matrix A exists when its determinant is non-zero and

the determinant of a 2x2 matrix A = (a
c

b
d) is given by det A = ad-cb. The trans-

pose of A (denoted by AT) is given by AT = (d
c

b
a). The inverse of the matrix A

(denoted by A-1) is given by 1/det A (
d

-c
-b

a) and A. A-1 = A-1.A = I. The matrix I is

the identity matrix of the algebra of 2x2 matrices and is given by I = (1
0

0
1).

10 The first reference to matrices and determinants appears in Chinese mathematics c. 200 B.C.

 48 Mathematical Approaches to Software Quality

The matrix representation of the linear equations and the solution of the linear

equations are as follows:

a b x = r

c d y s

x =
d/det A -b/det A r

y -c/det A a/det A s

The addition of two 2x2 matrices A = (a
c

b
d) and B = (p

q
q

s) is given by a matrix

whose entries is the addition of the individual components of A and B; the mul-

tiplication of two 2x2 matrices is given by:

a p+br aq+bs

cp+dr cq+ds

The addition of two matrices is commutative: i.e., A + B = B + A; the multipli-

cation of matrices is not commutative: i.e., AB BA. Matrices are an example

of an algebraic structure known as the ring.11

More general sets of linear equations may be solved by m x n matrices

(i.e., a matrix with m rows and n columns). The multiplication of two matrices A

and B is meaningful if and only if the number of columns of A is equal to the

number of rows of B: i.e., A is an m x n matrix and B is a n x p matrix and the

resulting matrix AB is a m x p matrix.

Let A = (aij) where i ranges from 1 to m and j ranges from 1 to n; B =

(bjl) where j ranges from 1 to n and l ranges from 1 to p. Then AB is given by

(cil) where i ranges from 1 to m and l ranges from 1 to p and cil is given by:

cil = n
k=1aikbkl .

 The identity matrix I is a n x n matrix and the entries are given by rij

where rii = 1 and rij = 0 where i j. The inverse of a n x n matrix exists if and

only if its determinant is non-zero. The reader is referred to texts on matrix the-

ory for more detailed information.

2.10 Finite State Machines

A finite state machine (also known as finite state automata) is a quintuple (Σ, Q,

δ, q0, T). The alphabet of the finite state machine (FSM) is given by Σ; the set of

11 A ring (R,+,*) is essentially a structure with two binary operations such that (R,+) is a commuta-

tive group; (R, *) is a semi-group and the left and right distributive properties of multiplication over

addition hold. For further information see [Her:75].

AB =

 2. Software Engineering Mathematics 49

states is given by Q; the transition function is defined by δ : Q x Σ →Q; the ini-

tial state is given by q0; and the set of accepting states is given by T where T ⊆
Q. A string is given by a sequence of alphabet symbols: i.e., s ∈ Σ* and the tran-

sition function δ can be extended to δ* : Q x Σ* →Q.

A string s ∈ Σ* is accepted by the finite state machine if δ*(q0, s) = qt

where qt ∈T. A finite state machine is termed deterministic if the transition func-

tion δ is a function; otherwise it is termed nondeterministic. A nondeterministic

automata is one for which the next state is not uniquely determined from the

present state and input.

Fig. 2.3. Finite State Machine

For the example above the input alphabet is given by Σ = {0,1}; the set

of states by {A,B,C}; the start state by A; the final state by {C}; and the transi-

tion function is given in the table below. The language accepted by the automata

is the set of all binary strings that end with a 1 that contain exactly two 1s.

State 0 1

A A B

B B C

C - -

 Table 2.3.. State Transition Table

The set of strings (or language) accepted by an automaton M is denoted

L(M). A language is termed regular if it is accepted by some finite state ma-

chine. Regular sets are closed under union, intersection, concatenation, comple-

ment, transitive closure. That is, for regular sets A,B ⊆ Σ* then:

• A ∪ B and A ∩ B are regular.

• Σ* \ A (i.e., Ac) is regular.

• AB and A* is regular.

The proof of these properties is demonstrated by constructing finite state

machines to accept these languages. The proof for A ∩ B is to construct a ma-

chine MA∩B that mimics the execution of MA and MB and is in a final state if

and only if both MA and MB are in a final state. Finite state machines are useful

in designing systems that process sequences of data.

A B C

0 0

1 1

 50 Mathematical Approaches to Software Quality

2.11 Graph Theory

A graph G is a pair of finite sets (V,E) such that E is a binary symmetric relation

on V. The set V is termed the set of vertices (or nodes) and the set E is the set of

edges. A directed graph is a pair of finite sets (V,E) where E is a binary relation

that may not be symmetric. An edge e ∈ E consists of a pair <x,y> where x, y

are adjacent nodes in the graph. The degree of x is the number of nodes that are

adjacent to x. The set of edges is denoted by E(G) and the set of vertices is de-

noted by V(G).

The example below is of a directed graph with three edges and four

vertices.

 p

•
• •

• r s

 q

A graph G’ = (V’, E’) is a subgraph of G if V’ ⊆ V and E’ ⊆ E. A

weighted graph is a graph G = (V,E) together with a weighting function w:E

→N which associates a weight with every edge in the graph. For example, the

weight of an edge may be applied to model the bandwidth of a telecommunica-

tions link between two nodes.

For an adirected graph the weight of the edge is the same in both direc-

tions: i.e., w(vi,vj) = w(vj,vi) for all edges <vi,vj> in the graph. The degree of a

vertex v is the number of distinct edges incident to v. That is, deg v = |{u ∈V :

vu ∈E}|. A vertex of degree 0 is called an isolated vertex. Two vertices x,y are

adjacent if xy ∈ E, and x and y are said to be incident to the edge xy.

A graph G = (V,E) is said to be complete if all the vertices are adjacent:

i.e., E = V × V. A path v1, v2 , … ,vk from vertex v1 to vk is of length k-1 and con-

sists of the sequence of edges < v1, v2 >,< v2, v3 >,…< vk-1, vk >. The vertices in

the path are all distinct apart from possibly v1 and vk.. The path is said to be a

cycle if v1 = vk.. A Hamiltonian12 path in a graph G is a path that visits every

vertex once and once only. It is applicable to the traveling salesman problem

where a salesman wishes to travel to k cities in the country without visiting any

city more than once.

A graph is said to be connected if for any two given vertices v1, v2 in V

there is a path from v1 to v2. A connected graph with no cycles is a tree. A di-

rected acylic graph (dag) is a directed graph that has no cycles.

Two graphs G = (V,E) and G’ = (V’,E’) are said to be isomorphic if

there exists a bijection f : V V’ such that for any u,v ∈V, uv ∈ E if and only if

12 Sir Rowan Hamilton was an Irish mathematician and astronomer royal in Ireland. He discovered

the Quaternions (a generalization of complex numbers that have applications in robotics). He was a

contemporary of George Boole, first professor of mathematics at Queens College Cork, Ireland and

inventor of Boolean Algebra.

 2. Software Engineering Mathematics 51

f(u)f(v) ∈ E’. The mapping f is called an isomorphism. Two graphs that are iso-

morphic are equivalent apart from a relabeling of the nodes and edges.

2.12 Tools for Mathematics

There have been tools available for mathematics for several millennia. For ex-

ample, the abacus13 is a portable tool for counting that is built out of wood and

beads and has been available since 3000 B.C. More modern tools have been

introduced over time and these include tools such as the slide rule and electronic

calculators to perform calculation.

Mathematica is one of the most popular tools available for mathematics

and may be employed to do computations and to perform 2-dimensional or

3-dimensional plots of mathematical functions. It allows integrals to be com-

puted and allows matrix operations to be performed. It is a programming lan-

guage and the user may define powerful functions as appropriate.

It has been applied to many scientific areas including astronomy and

statistics, and it is very effective in working with large numbers. It can also rep-

resent real numbers precisely. Further information on Mathematica is available

from Wolfram Research http://www.wolfram.com/.

2.13 Summary

This chapter provided a brief introduction to the mathematics essential for soft-

ware engineering. Software engineers need a firm foundation in mathematics in

order to be engineers in the classical sense. The use of mathematics will enable

the software engineer to produce high-quality products that are safe to use. The

mathematics required by software engineers includes set theory, relations, func-

tions, mathematical logic, tabular expressions, matrix theory, graph theory, finite

state automata, calculus and probability theory.

The emphasis is on mathematics that can be applied rather than mathe-

matics for its own sake. The engineering approach aims to show how mathemat-

ics can be used to solve practical problems rather than an emphasis on the proof

 The advantage of mathematics is that it allows rigorous analysis and

avoids an overreliance on intuition. Mathematics provides precise unambiguous

statements and the mathematical proof of a theorem provides a high degree of
confidence in its correctness. The objective of the teaching of mathematics for

13 The abacus was invented by the Chinese c. 3000 B.C.

of mathematical correctness. The engineer applies mathematics and models

to the design of the product and the analysis of the design is a mathematical

activity.

 52 Mathematical Approaches to Software Quality

software engineering is to teach students on using and applying mathematics to

program well and to solve practical problems.
 Many programming courses treat the mathematics of programming as if

it is too difficult or irrelevant to the needs of computer science students. Instead,

many programming courses often focus on teaching the latest programming lan-
guage rather than placing the emphasis on the design of useful products. It is

important to teach students problem-solving skills such as formulating the prob-

lem; decomposing a problem into smaller problems; and integrating the solution.
This mathematical training will provide a solid foundation for the student to

enable practical industrial problems to be solved.

3

Logic for Software Engineering

3.1 Introduction

Logic is concerned with reasoning and the validity of arguments. It allows con-

clusions to be deduced from premises according to logical rules that ensure the

truth of the conclusion provided that the premises are true. Logic plays a key

role in mathematics but is regarded as a separate discipline from mathematics.

The 20th century witnessed an attempt to show that all mathematics can be de-

rived from formal logic. However, this effort failed as it was discovered that

there were truths in the formal system of arithmetic that could not be proved

within the system. This was proved by the Austrian logician Kurt Goedel.1

The roots of logic are in antiquity and early work was done by Aristotle

in a work known as the Organon [Ack:94] in the 4th century B.C. Aristotle re-

garded logic as a useful tool of inquiry into any subject. The formal logic devel-

oped by Aristotle is known as syllogistic logic, where a syllogism is a form of

reasoning in which a conclusion is drawn from two premises. A common or

middle term is present in the two premises but not in the conclusion. Each prem-

ise that occurs in a syllogism is of a subject-predicate form. A well-known ex-

ample of a syllogism is:

 All Greeks are mortal.

 Socrates is a Greek.

Therefore Socrates is mortal.

The common (or middle) term in this example is Greek and the argu-

ment is valid. Aristotle identified and classified the various types of syllogistic

arguments and determined those that were valid or invalid. The invention of

syllogistic logic was an impressive achievement as it was the first attempt at a

science of logic. There are many limitations to what the syllogistic logic may

1 This result is known as Goedel’s Incompletness Theorem and was proved in 1929.

 54 Mathematical Approaches to Software Quality

express and on its suitability as a representation of how the mind works. There

are four types of premises in a syllogistic argument either affirmative or nega-

tive and either universal or particular.

Type Symbol Example

Universal affirmative G A M All Greeks are mortal.

Universal negative G E M No Greek is mortal.

Particular affirmative G I M Some Greek is mortal.

Particular negative G O M Some Greek is not mortal.

Table 3.1. Types of Syllogistic Premises

Each premise contains a subject and a predicate, and the middle term may act as

subject or predicate. This leads to four basic forms of syllogistic arguments

where the middle is the subject of both premises; where the middle is the predi-

cate of both premises; and where the middle is the subject of one premise and

the predicate of the other premise.

(i) (ii) (iii) (iv)

M P P M P M M P

M S S M M S S M

----- ---- ----- ------

S P S P S P S P

There are four types of premises (A, E, I, O) and therefore sixteen sets

of premise pairs for each of the forms above. However, only some of these

premise pairs will yield a valid conclusion. Aristotle went through every possi-

ble premise pair to determine if a valid argument may be derived. He employs

rules of deduction to prove the validity of the conclusions. The syllogistic argu-

ment above is of form (iv) and is valid:

 G A M

 S I G

 S I M

Aristotle’s syllogistic logic is a term-logic rather than a propositional

logic. He uses letters to stand for the individual terms in a proposition whereas

in propositional logic a letter stands for a complete proposition. Aristotle also

did work in identifying and classifying bad arguments (known as fallacies) and

the names that he identified are still in use today.

Propositional logic was later discovered by Chrysippus (third head of

the Stoics) in the 3rd century B.C., but it did not replace Aristotle’s syllogistic

 3. Logic for Software Engineering 55

logic. Propositional logic was re-discovered in the 19th century and it is dis-

cussed in the next section.

3.2 Propositional Logic

Propositional logic is the study of propositions, a statement that is either true or

false. An example of a proposition P is given by the statement Today is

Wednesday. Then this statement is either true or false,2 and is true if today is

Wednesday and false otherwise. A propositional variable is used to stand for a

proposition (e.g., let the variable P stand for the proposition ‘2 + 2 = 4’ which is

true), and a propositional variable therefore takes the value true or false. The

negation of a proposition P (denoted ¬P) is the proposition that is true if and

only if P is false, and is false if and only if P is true. A formula in propositional

calculus may contain several propositional variables, and the truth or falsity of

the individual variables needs to be known prior to determining the truth or fal-

sity of the logical formula.

Each propositional variable has two possible values, and a formula with

n-propositional variables has 2n values associated with the propositional vari-

ables. The set of values associated with the n variables may be used to derive a

truth table with 2n rows and n + 1 columns. Each row gives each of the 2n values

that the n variables may take and column n + 1 gives the result of the logical

expression for that set of values of the propositional variables.

A rich set of connectives is employed in propositional calculus to com-

bine propositions and to build the well-formed formulae of the calculus. This

includes the conjunction of two propositions (A ∧ B), the disjunction of two

propositions (A ∨ B), and the implication of two propositions (A B). These

connectives allow compound propositions to be formed, and the truth of the

compound propositions is determined from the truth-values of the constituent

propositions and the rules associated with the logical connective. The meaning

of the logical connectives is given by truth tables.3

Propositional logic allows further truths to be derived by logical rea-

soning or rules of inference. These rules enable new propositions to be deduced

from a set of existing propositions provided that the rules of inference for the

logic are followed. A valid argument (or deduction) is truth preserving: i.e., if

the set of propositions is true then the deduced proposition will also be true. The

various logical rules include rules such as modus ponens: i.e., given the truth of

the proposition A and the proposition A B, then the truth of proposition B

follows.

2 Time zones are ignored and it is assumed that the statement is made with respect to a specific place

and time.

3 Basic truth tables were first used by Frege, and developed further by Post and Wittgenstein.

 56 Mathematical Approaches to Software Quality

 The propositional calculus is employed in reasoning about propositions

and may be applied to formalize arguments in natural language. It has also been
applied to computer science and the term Boolean algebra is named after the

English mathematician ‘George Boole’. Boole was the first professor of mathe-

matics at Queens College, Cork in the mid-19th century and he formalized the
laws of propositional logic that are the foundation for modern computers. Boo-

lean algebra is used widely in programs: for example, the Boolean condition in

an if then else statement determines whether a particular statement will be exe-
cuted or not; similarly, the Boolean condition in a while or for loop will deter-

mine if the statement in the body of the loop will be executed.

3.2.1 Truth Tables

Truth tables enable the truth-value of a compound proposition to be determined

from its underlying propositions. Compound propositions are formed from bi-

nary connectives such as conjunction, disjunction, negation, implication, and

equivalence.

The conjunction of A and B (denoted A ∧ B) is true if and only if both

A and B are true, and is false in all other cases. The disjunction of two proposi-

tions A and B (denoted A ∨ B) is true if at least one of A and B are true, and

false in all other cases. The disjunction operator is known as the inclusive or

operator as it is also true when both A and B are true; there is also an exclusive

or operator that is true exactly when one of A or B is true, and is false otherwise.

A B A ∧ B A B A ∨ B

T T T T T T

T F F T F T

F T F F T T

F F F F F F

 Table 3.2. Conjunction Table 3.3. Disjunction

The implication operation (A B) is true if whenever A is true means

that B is also true; and also whenever A is false. It is equivalent (as shown by a

A and B are true, or whenever both A and B are false.

A B A B A B A ≡ B

T T T T T T

T F F T F F

F T T F T F

F F T F F T

 Table 3.4. Implication Table 3.5. Equivalence

truth table) to ¬A∨ B. The equivalence operation (A ≡ B) is true whenever both

 3. Logic for Software Engineering 57

The not operator (¬) is a unary operator (i.e., it has one argument) and is such

that ¬A is true when A is false, and is false when A is true.

A ¬A

T F

F T

 Table 3.6. Not Operation

3.2.2 Properties of Propositional Calculus

There are many well-known properties of propositional calculus and these prop-

erties enable logic expressions to be simplified and ease the evaluation of a

complex logical expression. These include the commutative, associative, and

distributive properties. The commutative property holds for the conjunction and

disjunction binary operators. This means that the order of the two propositions

may be reversed without affecting the resulting truth-value: i.e.,

A ∧ B = B ∧ A.

A ∨ B = B ∨ A.

The associative property holds for the conjunction and disjunction operators.

This means that order of evaluation of a subexpression does not affect the result-

ing truth-value: i.e.,

(A ∧ B) ∧ C = A ∧ (B ∧ C).

(A ∨ B) ∨ C = A ∨ (B ∨ C).

The conjunction operator distributes over the disjunction operator and vice

versa.

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).

The result of the logical conjunction of two propositions is false if one of the

propositions is false (irrespective of the value of the other proposition):

 A ∧ F = F = F ∧ A.

The result of the logical disjunction of two propositions, where one of the

A∨ F = A = F ∨ A.

propositions is known to be false is given by the truth-value of the other pro-

position. That is, the Boolean value “F” acts as the identity for the disjunction

operation:

 58 Mathematical Approaches to Software Quality

The result of the logical conjunction of two propositions, where one of the

propositions is known to be true, is given by the truth-value of the other proposi-

tion. That is, the Boolean value “T” acts as the identity for the conjunction op-

eration:

 A ∧ T = A = T ∧ A.

The ∧ and ∨ operators are idempotent. That is, when the arguments of the con-

junction or disjunction operator is the same proposition A the result of the op-

eration is A. The idempotent property allows expressions to be simplified:

 A ∧ A = A.

A ∨ A = A.

The law of the excluded middle is a fundamental property of the propositional

calculus. This states that a proposition A is either true or false: i.e., there is no

third logical value:

 A ∨ ¬A.

De Morgan was contemporary with Boole in the 19th century and the following

is known as De Morgan’s Law. It enables logical expressions to be simplified:

¬ (A ∧ B) = ¬A∨ ¬B.

¬ (A ∨ B) = ¬A ∧ ¬B.

A proposition that is true for all values of its constituent propositional variables

is known as a tautology. An example of a tautology is A ∨ ¬A. A proposition

that is false for all values of its constituent propositional variables is known as a

contradiction. An example of a contradiction is A ∧ ¬A.

3.2.3 Proof in Propositional Calculus

One of the very useful features of logic is that further truths may be derived

from existing truths. These truths are derived from the currently known truths by

rules of inference that are truth preserving. One of the key properties of the pro-

positional calculus is that it is both complete and consistent. The completeness

property means that all true propositions are deducible in the calculus, and the

consistency property means that there is no formula A such that both A and ¬A

are deducible in the calculus.

 An argument in propositional logic consists of a sequence of proposi-

tions that are the premises of the argument and a further proposition that is the

conclusion of the argument. One elementary way to see if the argument is valid

is to produce a truth table to determine if the conclusion is true whenever all of

the premises are true. Consider a set of premises P1, P2, … Pn and conclusion

Q. Then to determine if the argument is valid using a truth table involves a

 3. Logic for Software Engineering 59

column in the truth table for each premise P1, P2, … Pn, and then to identify

the rows in the truth table for which these premises are all true. The truth-

value of the conclusion Q is examined in each of these rows, and if Q is true

for each case for which P1, P2, … Pn are all true then the argument is valid.

This is equivalent to P1 ∧ P2 ∧… ∧ Pn Q is a tautology. An alternate ap-

proach with truth tables is to assume the negation of the desired conclusion

(i.e., ¬Q) and to show that the premises and the negation of the conclusion

result in a contradiction (i.e., P1 ∧ P2 ∧… ∧ Pn ¬Q) is a contradiction.

However, the use of truth tables becomes cumbersome when there are a large

number of propositions involved, as there are 2n truth table entries for n pro-

positional variables.

 Truth tables allow an informal approach to proof and the proof is pro-

vided in terms of the meanings of the propositions or logical connectives. The

formalization of propositional logic is due to the German mathematician David

Hilbert,4 and it includes the definition of an alphabet of symbols and well-

formed formulae of the calculus, the axioms of the calculus, and rules of infer-

ence for deduction.

The deduction of a new formulae Q is via a sequence of well-formed

formulae P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a

hypothesis, or deducible from an earlier pair of formula Pj, Pk (where Pk is of

the form Pj Pi) and modus ponens. Modus ponens is a rule of inference that

states that given propositions A, and A B then proposition B may be deduced.

The deduction of a formula Q from a set of hypothesis H is denoted by H Q

and where Q is deducible from the axioms alone this is denoted by Q.

The deduction theorem states that if H ∪{P} Q then H P Q and

the converse of the theorem is also true: i.e., if H P Q then H ∪{P} Q.

The Hilbert approach allows reasoning about symbols according to rules and to

derive theorems from formulae irrespective of the meanings of symbols and

formulae. However, the propositional calculus is sound; i.e., any theorem de-

rived using the Hilbert approach is true; the calculus is also complete: i.e., every

tautology has a proof (i.e., is a theorem in the formal system). The propositional

calculus is consistent: i.e., it is not possible that both the well-formed formula A

and ¬A are deducible in the calculus. Propositional calculus is decidable: i.e.,

there is an algorithm to determine for any well-formed formula A whether A is a

theorem of the formal system. The Hilbert style system is slightly cumbersome

in conducting proof and is quite different from the normal use of logic in

mathematical deduction.

4 David Hilbert was a very influential German mathematician based at the University of Göttingen,

Germany. He is well known for his work on invariant theory, analytic geometry, and functional

analysis (Hilbert Spaces). He was a founder of the formalist school and launched a program that

attempted to show that all mathematics was reducible to logic. Hilbert’s objective was to deal with

the crisis in foundations in mathematics in the late 19th / early 20th century following the paradoxes

in set theory (e.g., Russel’s paradox). The Hilbert program aimed to provide a system that was both

consistent and complete; however, the program was dealt a fatal blow by the results of Kurt Goedel

in 1929.

 60 Mathematical Approaches to Software Quality

The German mathematician Gerhard Gentzen has developed a method

known as Natural Deduction, and this is intended to be a formal system that is

closer to natural reasoning. Natural induction includes rules for the introduction

and elimination of the logical operators ∧, ∨, , ≡, and also for reductio ab

adsurdum.

There are ten inference rules in the Natural Deduction system and they

∨, ¬, and ≡.

The two inference rules per operator are the introduction rule and the

elimination rule. The rules are defined as follows:

Rule Definition Description

∧ I P1, P2, … Pn

P1∧ P2∧ …∧ Pn

Given the truth of propositions P1, P2, …

Pn then the truth of the conjunction P1 ∧ P2

∧ …∧ Pn follows. This rule shows how a

conjunction can be introduced.

∧ E P1∧ P2∧ …∧ Pn

 Pi

Given the truth the conjunction P1 ∧ P2 ∧
…∧ Pn then the truth of proposition Pi fol-

lows. This rule shows how a conjunction

can be eliminated.

∨ I Pi

P1∨ P2∨ …∨ Pn

Given the truth of propositions Pi then the

truth of the disjunction P1 ∨ P2 ∨ …∨ Pn

follows. This rule shows how a disjunction

can be introduced.

∨ E P1 ∨ …∨ Pn, P1 E,… Pn E

 E

Given the truth of the disjunction P1 ∨ P2 ∨
…∨ Pn, and that each disjunct implies E,

then the truth of E follows. This rule shows

how a disjunction can be eliminated.

 I

From P1, P2, … Pn infer P

(P1∧ P2∧ …∧ Pn) P

This rule states that if we have a theorem

that allows P to be inferred from the truth

of premises P1, P2, … Pn (or previously

proved) then we can deduce (P1∧ P2∧ …∧
Pn) P. This is known as the Deduction

Theorem.

 E

 Pi Pj, Pi

 Pj

This rule is known as modus ponens. The

consequence of an implication follows if

the antecedent is true (or has been previ-

ously proved).

≡ I Pi Pj,Pj Pi

 Pi≡ Pj

If proposition Pi implies proposition Pj and

vice versa then they are equivalent (i.e., Pi

≡ Pj).

≡ E Pi ≡ Pj

 Pi Pj,Pj Pi

If proposition Pi is equivalent to proposition

Pj then proposition Pi implies proposition Pj

and vice versa.

are organized into two inference rules for each of the five logical operators ∧,

 3. Logic for Software Engineering 61

¬ I From P infer P1 ∧ ¬P1

 ¬P

If the proposition P allows a contradiction

to be derived, then ¬P is deduced. This is

an example of a proof by contradiction.

¬ E From ¬P infer P1 ∧ ¬P1

 P

If the proposition ¬P allows a contradiction

to be derived, then P is deduced. This is an

example of a proof by contradiction.

Table 3.7. Natural Deduction Rules

These rules are applied to derive further truths. Natural deduction is described in

detail in [Gri:81, Kel:97].

3.2.4 Applications of Propositional Calculus

Propositional calculus may be employed to reasoning about arguments in natu-

ral language. First, the premises and conclusion of argument are identified and

formalized into propositions. Propositional logic is then employed to deter-

mine if the conclusion is a valid deduction from the premises. Consider, for

example, the following argument that aims to prove that Superman does not

exist.

If Superman were able and willing to prevent evil, he would do so. If Superman

were unable to prevent evil he would be impotent; if he were unwilling to pre-

vent evil he would be malevolent; Superman does not prevent evil. If Superman

exists he is neither malevolent nor impotent; therefore Superman does not exist.

First, letters are employed to represent the propositions as follows:

a : Superman is able to prevent evil

w : Superman is willing to prevent evil

i : Superman is impotent

m : Superman is malevolent

p : Superman prevents evil

e : Superman exists

Then, the argument above is formalized in propositional logic as follows:

P1 (a ∧w) p

P2 (¬a i) ∧ (¬w m)

P3 ¬p

P4 e ¬i ∧¬m

P1 ∧ P2∧ P3 ∧ P4 ¬e

The following is a proof that Superman does not exist using propositional

logic.

 62 Mathematical Approaches to Software Quality

1. ¬p P3

2. ¬(a ∧w) ∨ p P1 (A B ≡ ¬A ∨ B)

3. ¬(a ∧w) 1,2 A ∨ B, ¬B A

4. ¬a ∨ ¬w 3, De Morgan’s Law

5. (¬a i) P2 (∧-Elimination)

6. ¬a i ∨ m 5, x y x y ∨ z

7. (¬w m) P2 (∧-Elimination)

8. ¬w i ∨ m 7, x y x y ∨ z

9. (¬a ∨ ¬w) (i ∨ m) 8, x z, y z x ∨ y z

10. (i ∨ m) 4,9 Modus Ponens

11. e ¬(i ∨ m) P4 (De Morgan’s Law)

12. ¬e∨ ¬ (i ∨ m) 11, (A B ≡ ¬A ∨ B)

13. ¬e 10, 12 A ∨ B, ¬B A

Therefore, the conclusion that Superman does not exist is a valid deduction from

the given premises.

3.2.5 Limitations of Propositional Calculus

The propositional calculus deals with propositions only. It is incapable of deal-

ing with the syllogism “All Greeks are mortal; Socrates is a Greek; therefore

Socrates is mortal” discussed earlier. This syllogism expressed in propositional

calculus would be A, B therefore C where A stands for “All Greeks are mortal”,

B stands for “Socrates is a Greek”, and C stands for “Socrates is mortal”.

Clearly, the argument is invalid in propositional logic. There is no way in pro-

positional calculus to express the fact that all Greeks are mortal.

Predicate calculus deals with the limitations of propositional calculus

by allowing variables and terms to be employed and using universal or existen-

tial quantification to express that a particular property is true of all (or at least

one) values of a variable. Predicate calculus is discussed in the next section.

3.3 Predicate Calculus

Predicates are statements involving variables and these statements become propo-

sitions once these variables are assigned values. The set of values that the vari-

ables can take (universe of discourse) needs to be specified and the variables in the
predicate take values from this universe. Predicate calculus enables expressions

such as all members of the domain have a particular property: e.g., (∀x)Px, or that

there is at least one member that has a particular property: e.g., (∃x)Px.
The syllogism “All Greeks are mortal; Socrates is a Greek; therefore

Socrates is mortal” may be easily expressed in predicate calculus by:

3. Logic for Software Engineering 63

(∀x)(Gx Mx)
Gs

Ms

In this example, the predicate Gx stands for x is a Greek and the predicate Mx

stands for x is mortal. The formula Gx Mx states that if x is a Greek then x is

mortal. The formula (∀x)(Gx Mx) states for any x if x is a Greek then x is

mortal. The formula Gs states that Socrates is a Greek and the formula Ms states

that Socrates is mortal.

The predicate calculus is built from an alphabet of constants, variables,

function letters, predicate letters, and logical connectives (including quantifiers).

Terms are built from constants, variables, and function letters. A constant or

variable is a term, and if t1,t2, …, tk are terms, then fi
k(t1,t2, …, tk) is a term (where

fi
k is a k-ary function letter). Examples of terms include: , x, x2+y2, cos x

where is the constant 3.14159, x is a variable, x2+y2 is shorthand for the func-

tion add(square(x), square(y)) where add is a 2-ary function letter and square is a

1-ary function letter.
The well-formed formulae are built from terms as follows. If Pi

k is a k-
ary predicate letter, t1,t2, …, tk are terms, then Pi

k (t1,t2, …, tk) is a well-formed

formula. If A and B are well-formed formulae then so are ¬A, A ∧B, A ∨B, A

 B, A ≡ B, (∀x)A, and (∃x)A. Examples of well-formed formulae include:

x = y,

(∀x)(x > 2),

(∃x) x2 = 2, (∀x)

(∃y) x2 = y.

The formula x = y states that x is the same as y; the formula (∀x)(x > 2)

states that every value of x is greater than the constant 2; (∃x) x2=2 states that

there is an x such that the value of x is the square root of 2; (∀x) (∃y) x2 = y states
that for every x there is a y such that the square of x is y.

The definition of terms and well-formed formulae specifies the syntax

of the predicate calculus and the set of well-formed formulae gives the language
of the predicate calculus. The terms and well-formed formulae are built from the

symbols and these symbols are not given meaning in the formal definition of the

syntax. The language defined by the calculus needs to be given an interpretation
in order to give a meaning to the terms and formulae of the calculus. The inter-

pretation needs to define the domain of values of the constants and variables,

and to provide meaning to the function letters, the predicate letters, and the logi-
cal connectives.

The formalization of predicate calculus includes the definition of an al-

phabet of symbols (including constants and variables), the definition of function

and predicate letters, logical connectives, and quantifiers. This leads to the

 64 Mathematical Approaches to Software Quality

new formula from the existing axioms and previously deduced formulae. The

deduction of new formulae Q is via a sequence of well-formed formulae P1, P2,

… Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis, or de-

ducible from one or more of the earlier formulae in the sequence.

The two rules of inference are modus ponens and generalization. Mo-

dus ponens is a rule of inference that states that given predicate formulae A, and

A B then the predicate formula B may be deduced. Generalization is a rule of

inference such that given predicate formula A, then the predicate formula (∀x)A

may be deduced where x is any variable. The deduction of a formula Q from a

set of hypothesis H is denoted by H Q and where Q is deducible from the axi-

oms alone this is denoted by Q. The deduction theorem states that if H ∪{P}

Q then H P Q5 and the converse of the theorem is also true: i.e., if H P

 Q then H ∪{P} Q. The Hilbert approach allows reasoning about symbols

according to rules and to derive theorems from formulae irrespective of the

meanings of symbols and formulae. However, the predicate calculus is sound:

i.e., any theorem derived using the Hilbert approach is true, and the calculus is

also complete.

The scope of the quantifier (∀x) in the well-formed formula (∀x)A is A.

Similarly, the scope of the quantifier (∃x) in the well-formed formula (∃x)B is B.
The variable x that occurs within the scope of the quantifier is said to be a bound

variable. If a variable is not within the scope of a quantifier it is free. A well-
formed formula is said to be closed if it has no free variables. A term t is free for

x in A if no free occurrence of x occurs within the scope of a quantifier (∀y) or

(∃y) in t. This means that the term t may be substituted for x without altering the
interpretation of the well-formed formula A. The substitution therefore takes

place only when no free variable in t will become bound by a quantifier in A

through the substitution.

For example, suppose A is ∀y (x2+y2 > 2) and the term t is y, then t is

not free for x in A as the substitution of t for x in A will cause the free variable y

in t to become bound by the quantifier ∀y in A.

3.3.1 Properties of Predicate Calculus

An interpretation gives meaning to a formula and consists of a domain of dis-

course and a valuation function. If the formula is a sentence (i.e., does not con-

tain any free variables) then the given interpretation of the formula is either true
or false. If a formula has free variables, then the truth or falsity of the formula

depends on the values given to the free variables. A free formula essentially

describes a relation say, R(x1, x2, .… xn) such that R(x1, x2, .… xn) is true if (x1,x2,

5 This should be stated more formally that if H ∪{P} Q by a deduction containing no application

of generalization to a variable that occurs free in P then H P Q.

definitions of the terms and well-formed formulae of the calculus. There are a set

of axioms for predicate calculus and two rules of inference for the deduction of

 3. Logic for Software Engineering 65

.… xn) is in relation R. If a free formula is true irrespective of the values given to

the free variables, then the formula is true in the interpretation.
A valuation (meaning) function gives meaning to the logical symbols

and connectives. Thus associated with each constant c is a constant cΣ in some

universe of values Σ; with each function symbol f of arity k, we have a function

symbol fΣ in Σ and fΣ : Σk → Σ; and for each predicate symbol P of arity k a rela-

tion PΣ ⊆ Σ k. The valuation function, in effect, gives a semantics to the language

of the predicate calculus L. The truth of a predicate P is then defined in terms of
the meanings of the terms, the meanings of the functions, predicate symbols, and

the normal meanings of the connectives.

Mendelson [Men:87] provides a technical definition of truth in terms of
satisfaction (with respect to an interpretation M). Intuitively a formula F is satis-

fiable if it is true (in the intuitive sense) for some assignment of the free vari-

ables in the formula F. If a formula F is satisfied for every possible assignment
to the free variables in F, then it is true (in the technical sense) for the interpreta-

tion M. An analogous definition is provided for false in the interpretation M.
A formula is valid if it is true in every interpretation; however, as there

may be an uncountable number of interpretations, it may not be possible to

check this requirement in practice. M is said to be a model for a set of formulae
if and only if every formula is true in M.

There is a distinction between proof theoretic and model theoretic ap-

proaches in predicate calculus. Proof theoretic is essentially syntactic, and we
have a list of axioms with rules of inference. In this way the theorems of the

calculus may be logically derived and thus we may logically derive (i.e., A)

the theorems of the calculus. In essence the logical truths are as a result of the
syntax or form of the formulae, rather than the meaning of the formulae. Model

theoretical, in contrast is essentially semantic. The truths derive essentially from

the meaning of the symbols and connectives, rather than the logical structure of
the formulae. This is written as M A.

A calculus is sound if all the logically valid theorems are true in the in-

terpretation, i.e., proof theoretic model theoretic. A calculus is complete if all
the truths in an interpretation are provable in the calculus, i.e., model theoretic

 proof theoretic. A calculus is consistent if there is no formula A such that A

and ¬A. The predicate calculus is sound, complete, and consistent. Predicate
calculus is not decidable: i.e., there is no algorithm to determine for any well-
formed formula A whether A is a theorem of the formal system. The undecida-

bility of the predicate calculus may be demonstrated by showing that if the

predicate calculus is decidable then the halting problem (of Turing machines) is
solvable.

3.3.2 Applications of Predicate Calculus

The predicate calculus is applicable to computer science and may be employed

to formally state the system requirements of a proposed system. It may also be
employed to define f(x,y) where f(x,y) is a piecewise defined function:

 66 Mathematical Approaches to Software Quality

f(x,y) = x2-y2 where x ≤ 0 ∧ y < 0;

f(x,y) = x2+y2 where x > 0 ∧ y < 0;

f(x,y) = x+y where x ≥ 0 ∧ y = 0;

f(x,y) = x-y where x < 0 ∧ y = 0;

f(x,y) = x+y where x ≤ 0 ∧ y > 0;

f(x,y) = x2+y2 where x > 0 ∧ y > 0.

The predicate calculus allows rigorous proof to take place to verify the presence

or absence of certain properties in a specification.

3.4 Undefined Values

Total functions f : X → Y are functions that are defined for every element in

their domain and are the norm in mathematics. However, there are exceptions,

for example, the function y = 1/x is undefined at x = 0. Partial functions are quite

common in computer science, and such functions may fail to be defined for one

or more values in their domain. One approach to deal with this is to employ a

precondition. The precondition limits the application of the function only to the

restricted members of the domain for which the function is defined. This makes

it possible to define a new set (a proper subset of the domain of the function) for

which the function is total over the new set.

However, in practice undefined terms often arise6 and therefore need to

be dealt with. Consider the following example take from [Par: 93] where √x is a

function whose domain is the positive real numbers. Then the following expres-

sion is undefined:

((x > 0) ∧(y = √x)) ∨ ((x ≤ 0) ∧(y = √-x)).

This is since the usual rules for evaluating such an expression involves

evaluating each subexpression and then performing the Boolean operations.

However, when x ≤ 0 the subexpression y = √x is undefined; whereas when x > 0

the subexpression y = √-x is undefined. Clearly, it is desirable that such expres-

sions be handled, and that for the example above, the expression would evaluate

to true. Classical 2-valued logic does not handle this situation adequately. There

have been several proposals to deal with undefined values. These include

Dijkstra’s cand and cor operators in which the value of the left-hand operand

determines whether the right hand operand expression is evaluated or not. The

logic of partial functions [Jon:90] uses a 3-valued logic7 and is discussed in the

6 It is best to avoid undefined terms and expressions by taking care with the definitions.

7 The above expression would evaluate to true under Jones 3-valued logic of partial functions.

 3. Logic for Software Engineering 67

next section. The approach of Parnas8 is to employ a 2-valued logic that deals

with undefinedness.

3.4.1 Logic of Partial Functions

Jones [Jon:90] has proposed the logic of partial functions (LPFs) as an approach

to deal with terms that may be undefined. This is a 3-valued logic and a logical

term may be true, false or undefined (denoted ⊥). The truth functional operators

in classical 2-valued logic may be applied in this 3-valued logic. They are de-

fined in the truth tables below:

Q T F ⊥ Q T F ⊥
P P∧Q P P∨Q

T T F ⊥ T T T T

F F F F F T F ⊥
⊥ ⊥ F ⊥ ⊥ T ⊥ ⊥

 Fig. 3.1. Conjunction Fig. 3.2. Disjunction

The conjunction of P and Q is true when both P and Q are true; false if

one of P or Q is false, and undefined otherwise. The operation is commutative.

The disjunction of P and Q (P ∨ Q) is true if one of P or Q is true; false if both P

and Q are false; and undefined otherwise. The implication operation (P Q) is

true when P is false or when Q is true; it is undefined otherwise. The equiva-

lence operation (P ≡ Q) is true when both P and Q are true or false; it is false

when P is true and Q is false (or vice versa); it is undefined otherwise.

Q T F ⊥ Q T F ⊥
P P Q P P≡Q

T T F ⊥ T T F ⊥
F T T T F F T ⊥
⊥ T ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 3.3. Implication Fig. 3.4. Equivalence

The not operator (¬) is a unary operator such ¬A is true when A is false, false

when A is true and undefined when A is undefined.

A ¬A

T F

F T

⊥ ⊥
 Table 3.8. Negation

8 The above expression evaluates to true for Parnas logic (a 2-valued logic).

 68 Mathematical Approaches to Software Quality

It is clear from the truth table definitions that the result of the operation may be

known immediately after knowing the value of one of the operands (e.g., dis-

junction is true if P is true irrespective of the value of Q). The law of the ex-

cluded middle: i.e., A∨ ¬A = true does not hold in the 3-valued logic of partial

functions. However, this is reasonable [Jon:90] as one would not expect the fol-

lowing to be true:

 (1/0 = 1) ∨ (1/0 ≠1).

There are other well-known laws that fail to hold such as:

(i) E E

(ii) Deduction theorem E1 E2 does not justify E1 E2 unless it

is known that E1 is defined.

(iii) Many of the tautologies of standard logic.

3.4.2 Parnas Logic

Predicate logic is an essential part of tabular expressions (discussed briefly in

Chapter 2 and in detail in Chapter 8). It is employed to partition the domain in

order to give the piecewise definition of a function. The Parnas approach to

logic is based on the philosophy that truth-values should be true or false only.9

That is, a logical term may be true or false only, and that there is no third logical

value. The evaluation of a logical expression yields the value true or false irre-

spective of the assignment of values to the variables in the expression. The ap-

proach allows the following expression: (y = √x)) ∨ (y = √-x) that is undefined in

classical logic to yield the value true.

A key advantage of the Parnas approach is that it does not introduce

any new symbols into the logic (such as the undefined symbol ⊥). Further, the

logical connectives retain their traditional meaning. The logic should therefore

be easy for engineers and computer scientists to understand as it is similar to the

logic studied at high school.

The approach is to define the meaning of predicate expressions by first

defining the meaning of the primitive predicate expressions. The primitive ex-

pressions are then used as the building bocks for predicate expressions. The

evaluation of a primitive expression Rj(V) (where V is a comma-separated set of

terms with some elements of V including the application of partial functions) is

false if the value of an argument of a function used in one of the terms of V is

9 However, I find it quite strange and unintuitive to assign the value false to the primitive predicate

calculus expression y = 1/ 0. I wonders where the classical engineering justification is for this ap-

proach is?

not in the domain of that function.10 The following examples should make this

clearer:

 3. Logic for Software Engineering 69

Expression x < 0 x 0

y = √x

y = 1/0

y = x2 + √x

False

False

False

True if y = √x, False otherwise

False

True if y = x2 + √x, False other-

wise

Table 3.9. Examples of Undefinedness

Expression i ∈ {1 .. N} i ∉ {1..N}

B[i] = x

∃i, B[i] = x

True if B[i]=x

True if B[i]=x

for some i,

False otherwise

False

False

Table 3.10. Example of Undefinedness in Array

These primitive expressions are used to build the predicate expressions and the

standard logical connectives are used to yield truth-values for the predicate ex-

pression.

The power of the Parnas logic is best demonstrated by considering a

tabular expressions example taken from [Par:93]. The table below specifies the

behavior of a program that searches the array B for the value x. The table de-

scribes the properties of the values of j’ and present’. There are two cases to

consider:

1. There is an element in the array with the value of x;

2. There is no such element in the array with the value of x.

(∃ i, B[i]=x) ¬(∃ i, B[i]=x)

j’| B[j’]=x true

present’= true false

Fig 3.5. Finding Index in Array

Clearly, from the example above the predicate expressions ∃i, B[i] = x

and ¬(∃ i, B[i]=x) are defined. One disadvantage of the Parnas approach is that

some common relational operators (e.g., >, ≥, ≤, and <) are not primitive in the

logic. However, these relational operators are then constructed from primitive

operators. Further, the axiom of reflection does not hold in the logic.

10 The approach avoids the undefined logical value (⊥) and a 2-valued logic is maintained. The

Parnas approach to undefined expressions seems to work well with his tabular expressions.

H1

H2

G

 70 Mathematical Approaches to Software Quality

3.4.3 Dijkstra and Undefinedness

The cand and cor operators were introduced by Dijkstra to deal with undefined
values. They are non-commutative operators and allow the evaluation of predi-

cates that contain undefined values. For example, the expression x/y is undefined

for y = 0. Consider the following expression:

y = 0 ∨ (x/y = 2)

Then this expression is undefined when y = 0 as x/y is undefined, and

the logical or operation is not defined when one of its operands is undefined.
However, there is a case for giving meaning to such an expression when y = 0

since in that case the first operand of the logical or operation is true. Further, the
logical or operation is defined to be true if either of its operands is true. This

motivates the introduction of the cand and cor operators. These operators are

associative and their truth tables are defined below:

a b a cand b a b a cor b

T T T T T T

T F F T F T

T U U T U T

F T F F T T

F F F F F F

F U F F U U

U T U U T U

U F U U F U

U U U U U U
Table 3.11. a cand b Table 3.12. a cor b

The order of the evaluation of the operands for the cand operation is to

evaluate the first operand; if the first operand is true then the result of the opera-
tion is the second operand; otherwise the result is false. The expression a cand b

is equivalent to:

a cand b ≅ if a then b else F

The order of the evaluation of the operands for the cor operation is to
evaluate the first operand. If the first operand is true then the result of the opera-

tion is true; otherwise the result of the operation is the second operand. The ex-

pression a cor b is equivalent to:

a cor b ≅ if a then T else b

The cand and cor operators satisfy the following laws:

 3. Logic for Software Engineering 71

• Associativity

The cand and cor operators are associative.

(A cand B) cand C = A cand (B cand C)

(A cor B) cor C = A cor (B cor C)

• Distributivity

The cand operator distributes over the cor operator and vice

versa.

A cand (B cor C) = (A cand B) cor (A cand C)

A cor (B ∧ C) = (A cor B) cand (A cor C)

De Morgan’s law enables logical expressions to be simplified.

¬ (A cand B) = ¬A cor ¬B

¬ (A cor B) = ¬A cand ¬B

COMMENT (UNDEFINEDNESS)

It is best to avoid undefinedness and the preconditions of a function needs to be

checked to ensure that the function is defined for the particular value. I consider

it unintuitive to assign the truth value of false to the expression y = 1/0 as pro-

posed by Parnas. The approaches of Jones and Dijkstra have the disadvantage

that they are 3-valued logic that are less intuitive than classical 2-valued logic.

3.5 Miscellaneous

There are other logics that arise in computer science. These include the temporal

logics that are concerned with expressing properties that are time dependent. For

example, a specification may require a fairness property to be expressed, and

some formal methodists have introduced special temporal operators to express

conditions that will always be true; conditions that will eventually be true; and a

condition that will be true in the next time instance. For example:

 P - P is always true

 P - P is true sometime in the future

 P - P is true in the next time instant.

It is also possible to express temporal operations directly in classical mathemat-

ics rather than applying specialist operators as above. This approach is preferred

by Parnas and others. For example, the value of a function f at a time instance

prior to the current time t is defined as:

 72 Mathematical Approaches to Software Quality

 Prior(f, t) = limt →0 f(t-)

Another logic that arises in computer science is fuzzy logic, and this logic is

used to deal with degrees of truth. The reader is referred to texts on temporal

logic and fuzzy logics.

Perhaps, one of the more unusual logics that has been invented is intuitionist

logic.11 The reader is referred to [Hey:66]. This logic has been applied to Type

Theory by Martin Lof [Lof:84].

3.6 Tools for Logic

There are several tools available for theorem proving. These include the Boyer-

Moore theorem prover known as NQTHM; the Isabelle theorem prover, and the

HOL system. The Boyer-Moore theorem prover was developed in the early

proved since then and it is currently known as NQTHM.12 The theorem prover

has been effective in proving well-known theorems such as Goedel’s Incom-

pleteness Theorem, the unsolvability of the Halting problem, a formalization of

the Motorola MC 68020 Microprocessor, and many more. Computational Logic

Inc.13 is a company founded by Boyer and Moore in 1983 to share the benefits

of a formal approach to software development with the wider computing com-

munity. It is based in Austin, Texas, and provides services in the mathematical

modeling of hardware and software systems. This involves the use of mathemat-

ics and logic to formally specify microprocessors and other systems. The use of

its theorem prover is then to formally verify the implementation meets its speci-

fication: i.e., to prove that the microprocessor or other system satisfies its speci-

fication.

 Isabelle is a theorem proving environment developed at Cambridge

University by Larry Paulson and Tobias Nipkow of the Technical University of

11 Intuitionism was a highly controversial school of mathematics founded by the Dutch mathemati-

cian L. E. J. Brouwer. Initially, Brouwer was well-known for his work on topology including the

fixpoint theorem. However, he was particularly interested in the foundations of mathematics and the

resulting problems from the paradoxes of set theory. He was therefore interested in a secure founda-

tions for mathematics and he took the view that for a mathematical object to be proved to exist then

there must be a constructive way to produce the object. He therefore rejected the Law of the Ex-

cluded Middle and exhibited an extreme form of constructivism. This took the form of an absolute

rejection of indirect proofs and argued that for an entity to exist then it needed to be constructed.

Consequently, if the Brouwer view of the world were accepted then many of the classical theorems

of mathematics (including his own well-known results in topology) could no longer be said to be

true. He developed a form of logic called Intuitionist Logic in which many of the results of classical

mathematics were no longer true.

12 I understand that the NQTHM tool has been superseded by ACL2 available from the University

of Texas.

13 I understand that Computational Logic Inc. ceased trading in 1997.

1970s by B. S. Boyer and J. S. Moore. The tool has been continuously im-

 3. Logic for Software Engineering 73

Munich. It allows mathematical formulas to be expressed in a formal language

and provides tools for proving those formulas. The main application is the for-

malization of mathematical proofs, and proving the correctness of computer

hardware or software with respect to its specification and proving properties of

computer languages and protocols. Isabelle is a generic theorem prover in the

sense that it has the capacity to accept a variety of formal calculi, whereas most

other theorem provers are specific to a specific formal calculus. Isabelle is avail-

able free of charge under an open source license.

 The HOL system is an environment for interactive theorem proving in

a higher-order logic.14 The HOL system has been applied to the formalization of

mathematics and the verification of hardware. It is used by academia and indus-

try and is available free of change. HOL was originally developed at Cambridge

University in the United Kingdom in the early 1980s, and it has been continu-

ously improved upon since then. HOL 4 is the latest version and is an open

source project.

 There is a learning curve with the theorem-provers above and it gener-

ally takes a couple of months for users to become familiar with the theorem-

prover.

3.7 Summary

14 Higher-order logic allows quantification over functions and predicates whereas quantification

over variables only is allowed in first-order logic.

This chapter considered propositional and predicate calculus. Propositional logic

is the study of propositions, and a proposition is a statement that is either true or

false. A formula in propositional calculus may contain several variables, and the

truth or falsity of the individual variables and the meanings of the logical con-

nectives determine the truth or falsity of the logical formula.
A rich set of connectives is employed in propositional calculus to com-

bine propositions and to build the well-formed formulae of the calculus. This

includes the conjunction of two propositions (A ∧ B), the disjunction of two

propositions (A ∨ B), and the implication of two propositions (A B). These
connectives allow compound propositions to be formed, and the truth of the

compound propositions is determined from the truth-values of the constituent
propositions and the rules associated with the logical connective. The meaning

of the logical connectives is given by truth tables.

Predicates are statements involving variables, and these statements be-
come propositions once these variables are assigned values. Predicate calculus

 74 Mathematical Approaches to Software Quality

piecewise defined and to prove the presence or absence of certain properties in

a specification.

allows expressions, such as all members of the domain have a particular prop-

erty to be expressed formally: e.g., (∀x)Px, or that there is at least one member

that has a particular property: e.g., (∃x)Px. Predicate calculus may be employed
to specify the requirements for a proposed system, to define a function that is

4

Z Specification Language

4.1 Introduction

Z is a formal specification language founded on Zermelo1 set theory. It was de-

veloped at the Programming Research Group at Oxford University in the early

1980s [Dil:90]. It has been employed in both industry and academia and the
language has been standardized in the ISO/IEC 13568:2000 standard. Z specifi-

cations are mathematical and it uses a classical 2-valued logic. This is a key ad-

vantage of its approach over the more conventional specification methods as Z
specifications may be examined mathematically and various results about the

specification proved. The use of mathematics helps to identify inconsistencies
and gaps in the specification if they exist, and there are mathematical techniques

to prove that the software implementation meets its specification.

Z is a model-oriented approach with an explicit model of the state of an
abstract machine given, and operations are defined in terms of this state. Its

main features include a mathematical notation that is used for the formal specifi-

cation. The schema calculus is used to structure Z specifications and describes
states and state transitions. It is visually striking, and consists essentially of

boxes, with these boxes or schemas used to describe operations and states. The

schema calculus enables schemas to be used as building blocks and combined
with other schemas. The simple schema below is the specification of the positive

square root of a real number.

--SqRoot-----------------
 num?, root! :

num? 0
root!2 = num?
root! 0

Fig. 4.1. Specification of Square Root

1 Zermelo is well known for his work in axiomatic set theory. Fraenkel improved upon Zermelo’s

work and the resulting axiomatic system is known as Zermelo-Fraenkel (ZF) Set Theory. Zermelo is

also well known for the proof of the well ordering theorem (i.e., every set can be well-ordered). He

proved this result using the Axiom of Choice.

 76 Mathematical Approaches to Software Quality

The schema calculus is a powerful means of decomposing a specifica-
tion into smaller pieces or schemas. This decomposition helps to ensure that a Z

specification is highly readable, as each individual schema is small in size and

self-contained. Exception handling may be addressed by defining schemas for
the exception cases, and then combining the exception schema with the original

operation schema. Mathematical data types are used to model the data in a sys-

tem, these data types obey mathematical laws. These laws enable simplification
of expressions, and are useful with proofs.

Operations are defined in a precondition/postcondition style. A precon-

dition must be true before the operation is executed and the postcondition must
be true after the operation has been executed. In Z, the precondition is implicitly

defined within the operation. The precondition for the specification of the square
root function above is that num? 0; i.e., the function SqRoot may be applied to

positive real numbers only. Each operation has an associated proof obligation to

ensure that if the precondition is true, then the operation preserves the system
invariant. The system invariant is a property of the system that must be true at

all times. The initial state itself is, of course, required to satisfy the system in-

variant. The postcondition for the square root function is root!2 = num? and
root! 0. That is, the square root of a number is positive and its square gives the

number. Postconditions employ a logical predicate which relates the prestate to

the poststate, and the poststate of a variable being distinguished by priming the
variable, e.g., v’.

Z is a typed language and whenever a variable is introduced its type

must be given. A type is simply a collection of objects, and there are several

standard types in Z. These include the natural numbers , the integers , and the

real numbers . The declaration of a variable x of type X is written x : X. It is
also possible to create your own types in Z. Various conventions are employed

within Z specification, for example v? indicates that v is an input variable; v!

indicates that v is an output variable. The variable num? is an input variable and

root! is an output variable for the square root example above. The notation Ξ in
a schema indicates that the operation Op does not affect the state; whereas the

notation in the schema indicates that Op is an operation that affects the state.

Many of the data types employed in Z have no counterpart in standard
programming languages. It is therefore important to identify and describe the

concrete data structures that ultimately will represent the abstract mathematical

structures. As the concrete structures may differ from the abstract, the operations
on the abstract data structures may need to be refined to yield operations on the

concrete data that yield equivalent results. For simple systems, direct refinement

(i.e., one step from abstract specification to implementation) may be possible; in

more complex systems, deferred refinement2 is employed, where a sequence of

2 It is debatable whether refinement is cost effective in mainstream software engineering. It involves

producing a sequence of increasingly more concrete specifications until eventually the executable

code is produced. Each refinement step has associated proof obligations to prove that the refinement

step is valid.

increasingly concrete specifications are produced to yield the executable specifi-

cation.

 4. Z Specification Language 77

EXAMPLE 4.1

The following is a Z specification to borrow a book from a library system. The
library is made up of books that are on the shelf, books that are borrowed, and

books that are missing. These are three mutually disjoint subsets of the set of

books Bkd-Id.
The system state is defined in the Library schema below, and opera-

specifications, and this is discussed later in the chapter.

--Library-----------------
on-shelf, missing, borrowed : Bkd-Id

 on-shelf ∩ missing = Ø
 on-shelf ∩ borrowed = Ø
 borrowed ∩ missing = Ø

Fig. 4.2. Specification of a Library System

The notation Bkd-Id is used to represent the power set of Bkd-Id (i.e., the set
of all subsets of Bkd-Id). The disjointness condition for the library is expressed

by the requirement that the pairwise intersection of the subsets on-shelf, bor-

rowed, missing is the empty set.

--Borrow-----------------
Library

b? :Bkd-Id

 b? ∈ on-shelf
 on-shelf’ = on-shelf \ {b?}
 borrowed’ = borrowed ∪ {b?}

 Fig. 4.3. Specification of Borrow Operation

The specification of the library system models a library with sets repre-
senting books on the shelf, on loan, or missing. The precondition for the Borrow

operation is that the book must be available on the shelf to borrow. The post-

condition is that the borrowed book is added to the set of borrowed books and is
removed from the books on the shelf.

Z has been successfully applied in industry, and one of its well-known

successes is the CICS project at IBM Hursley in the United Kingdom.3

3 This project claimed a 9% increase in productivity attributed to the use of formal methods.

tions such as Borrow and Return affect the state. The Borrow operation is

specified below. There is a calculus for combining schemas to make larger

 78 Mathematical Approaches to Software Quality

4.2 Sets

Sets have been discussed earlier in the book and this section focuses on their use

in Z. Sets may be enumerated by listing all of their elements. Thus, the set of all

even natural numbers less than or equal to 10 is:

 {2,4,6,8,10}.

Sets can be created from other sets using set comprehension. For ex-

ample, the set of even natural numbers less than 10 is given by set comprehen-

sion as:

 {n : | n ≠0 ∧ n < 10 ∧ n mod 2 = 0 •n}

There are three main parts to the set comprehension above. The first

part is the signature of the set and this is given by n : above. The first part is

separated from the second part by a vertical line. The second part is given by a

predicate and this is n ≠ 0 ∧ n < 10 ∧ n mod 2 = 0 in the example. The second

part is separated from the third part by a bullet. The third part is a term, and is

simply n in the example above. The term could be a more complex expression:

e.g., log(n2).

In mathematics, there is just one empty set. However, since Z is a typed

set theory, there is an empty set for each type of set. Hence, there are an infinite

number of empty sets, one for each type of set. The empty set is written ∅ [X]

where X is the type of the empty set. In practice, X is omitted when the type is

clear.

Various operations on sets such as union, intersection, difference, and

symmetric difference are employed in Z. These operations have been discussed

earlier in Chapter 2. The powerset of a set X is the set of all subsets of X. It is

denoted by X and includes the empty set. The set of nonempty subsets of X is

denoted by 1 X where

1 X == {U : X | U ≠ ∅ [X]}.

 A finite set of elements of type X (denoted by F X) is a subset of X

that cannot be put into one-to-one correspondence with a proper subset of itself.

This is defined formally as:

F X == {U : X | ¬∃V: U • V≠ U ∧ (∃f : V > U)}.

injective, surjective, and bijective functions are discussed later.

The fact that Z is a typed language means that whenever a variable is intro-

 The expression f: V > U denotes that f is a bijection from U to V and

duced (e.g., in quantification with ∀ and ∃) it is first declared. For example, ∀

 4. Z Specification Language 79

j:J • P Q. There is also the unique existential quantifier ∃1 j:J | P • Q which

states that there is exactly one j of type J that has property P.

4.3 Relations

Relations have been discussed earlier in the book and they are used extensively

in Z. A relation R between X and Y is any subset of the Cartesian product of X

and Y; i.e., R ⊆ (X × Y) and the relation is denoted by R : X ↔Y. The notation

x y indicates that the pair (x,y) ∈R.

Consider, the relation home_owner : Person ↔ Home that exists be-

tween people and their homes. An entry daphne mandalay ∈ home_owner if
daphne is the owner of mandalay. It is possible for a person to own more than
one home:

rebecca nirvana ∈ home_owner

rebecca tivoli ∈ home_owner

It is possible for two people to share ownership of a home:

sheila nirvana ∈ home_owner

blaithín nirvana ∈ home_owner

There may be some people who do not own a home and there is no entry for
these people in the relation home_owner. The type Person includes every possi-

ble person, and the type Home includes every possible home. The domain of the

relation home_owner is given by:

x ∈ dom home_owner ⇔ ∃h : Home • x h ∈ home_owner.

The range of the relation home_owner is given by:

h ∈ ran home_owner ⇔ ∃x : Person • x h ∈ home_owner.

The composition of two relations home_owner : Person ↔ Home and

home_value : Home ↔ Value yields the relation owner_wealth : Person ↔
Value and is given by the relational composition home_owner ; home_value

where:

p v ∈ home_owner ; home_value ⇔

(∃h : Home • p h ∈ home_owner ∧ h v ∈ home_value)

 80 Mathematical Approaches to Software Quality

The relational composition may also be expressed as:

owner_wealth = home_value o home_owner.

The union of two relations arises frequently in practice, for example, in
the derivation of the after state of a relation from the before state. Suppose a new

entry aisling muckross is to be added. Then this is given by

home_owner’ = home_owner ∪ {aisling muckross}

Suppose that we are interested in knowing all females who are house
owners. Then we restrict the relation home_owner so that the first element of all

ordered pairs have to be female. Consider the sets male, female : Person with

{aisling, eithne} ⊆ female, and lawrence ⊆ male, and male female = ∅.

home_owner = {aisling muckross, eithne parknasilla,

lawrence nirvana}

female home_owner = {aisling muckross, eithne parknasilla}

 That is, female home_owner is a relation that is a subset of
home_owner and the first element of each ordered pair in the relation is female.

The operation is termed domain restriction and its fundamental property is:

x y ∈ U R ⇔ (x ∈ U ∧ x y ∈ R}

where R : X ↔Y and U : X.

There is also a domain antirestriction (subtraction) operation and its fundamental

property is:

x y ∈ U R ⇔ (x ∉ U ∧ x y ∈ R}

where R : X ↔Y and U : X.

There are also range restriction (the operator) and the range antirestriction

operator (the operator). These are discussed in [Dil:90].

 4. Z Specification Language 81

4.4 Functions

A function [Dil:90] is an association between objects of some type X and objects

of another type Y such that given an object of type X, there exists only one ob-
ject in Y associated with that object. A function is a set of ordered pairs where

the first element of the ordered pair has at most one element associated with it.

A function is therefore a special type of relation, and a function may be total or
partial. A total function has exactly one element in Y associated with each ele-

ment of X, whereas a partial function has at most one element of Y associated

with each element of X (there may be elements of X that have no element of Y
associated with them).

A partial function from X to Y (denoted f : X +→Y) is a relation f : X ↔Y
such that:

∀x:X; y,z:Y • (x y ∈ f ∧ x→ z∈ f y = z).

The association between x and y is denoted by f(x) = y, and this indicates that the
value of the partial function f at x is y. A total function from X to Y (denoted f : X

→ Y) is a partial function such that every element in X is associated with some
value of Y.

f : X → Y ⇔ f : X +→Y ∧ dom f = X

Clearly, every total function is a partial function.

One operation that arises quite frequently in specifications is the function over-
ride operation. Consider the following specification of a temperature map:

--TempMap-----------------
CityList : City
temp : City +→Z

dom temp = CityList

 Fig. 4.4. Temperature Map

Suppose the temperature map is given by temp = {Cork 17, Dublin 19,

Mallow 15}. Then consider the problem of updating the temperature map if a

new temperature reading is made in Cork say {Cork 18}. Then the new tem-

perature chart is obtained from the old temperature chart by function override to

yield {Cork 18, Dublin 19, Mallow 15}. This is written as:

temp’ = temp ⊕ {Cork 18}.

 82 Mathematical Approaches to Software Quality

The function override operation combines two functions of the same type to give

a new function of the same type. The effect of the override operation is that the
entry {Cork 17} is removed from the temperature chart and replaced with the

entry {Cork 18}.

Suppose f,g : X +→Y are partial functions then f ⊕ g is defined and indicates that f
is overridden by g. It is defined as follows:

 (f ⊕ g) (x) = g(x) where x ∈ dom g

 (f ⊕ g) (x) = f(x) where x∉ dom g ∧ x ∈ dom f.

This may also be expressed (using function override) as:

f ⊕ g = ((dom g) f) ∪ g.

There is notation in Z for injective, surjective, and bijective functions. An injec-

tive function is one to one: i.e.,

f(x) = f(y) x = y.

A surjective function is onto: i.e.,

Given y ∈Y, ∃x ∈ X such that f(x) = y.

A bijective function is one to one and onto and indicates that the sets X and Y

can be put into one to one correspondence with one another. Z includes λ-

notation to define functions. For example, cube = λx:N • x * x * x. Function
composition f ; g is similar to relational composition.

4.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by seq X.

Sequences are written as x1, x2, …. xn and the empty sequence is denoted by .

Sequences may be used to specify the changing state of a variable over time

where each element of the sequence represents the value of the variable at a dis-

crete time instance.

Sequences are functions and a sequence of elements drawn from a set X

is a finite function from the natural numbers to X. A partial finite function f from

X to Y is denoted by f : X ++→Y . A finite sequence of elements of X is given by f :

N ++→X, and the domain of the function consists of all numbers between 1 and #

f. It is defined formally as:

 seq X == {f : N ++→X | dom f = 1 .. # f • f }.

 4. Z Specification Language 83

The sequence x1, x2,, ..., xn above is given by:

 {1 x1, 2 x2, ..., n xn}

There are various functions to manipulate sequences. These include the se-

quence concatenation operation. Suppose σ = x1, x2, …, xn and τ = y1, y2, …,

ym then:

σ ∩ τ = x1, x2, …, xn, y1, y2, ..,. ym

The head of a nonempty sequence gives the first element of the sequence.

head σ = head x1, x2, …, xn = x1.

The tail of a non-empty sequence is the same sequence except that the first ele-

ment of the sequence is removed.

tail σ = tail x1, x2, …, xn = x2, …, xn

Suppose f : X Y and σ is a sequence (i.e., σ : seq X) then the function map

applies f to each element of σ:

map f σ = map f x1, x2, …, xn = f (x1), f (x2), …, f (xn)

The map function may also be expressed via function composition as:

map f σ = σ ; f.

The reverse order of a sequence is given by the rev function:

rev σ = rev x1, x2, ..., xn = xn, …, x2 , x1 .

4.6 Bags

A bag is similar to a set except that there may be multiple occurrences of each

element in the bag. A bag of elements of type X is defined as a partial function

from the type of the elements of the bag to positive whole numbers. The defini-

tion of a bag of type X is:

 bag X == X +→ 1.

 84 Mathematical Approaches to Software Quality

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles, and 1

green marble. This is denoted by B = [b,b,b,g,r,r] . The bag of marbles is thus

denoted by:

 bag Marble == Marble +→ 1.

The function count determines the number of occurrences of an ele-

ment in a bag, for the example above, count Marble b = 3, and count Marble y =

0 since there are no yellow marbles in the bag. This is defined formally as:

 count bag X y = 0 y ∉bag X

 count bag X y = (bag X) (y) y ∈bag X.

An element y is in bag X if and only if y is in the domain of bag X.

y in bag X ⇔ y ∈ dom (bag X).

The union of two bags of marbles B1 = [b,b,b,g,,r,r] and B2 = [b,,g,,r,y]
is given by B1 B2 = [b,b,b,b,g,g,r,r,r,y] . It is defined formally as:

(B1 B2) (y) = B2 (y) y ∉ dom B1∧ y ∈ dom B2

(B1 B2) (y) = B1 (y) y ∈ dom B1∧ y ∉ dom B2

(B1 B2) (y) = B1 (y) + B2 (y) y ∈ dom B1∧ y ∈ dom B2.

 A bag may be used to record the number of occurrences of each prod-

uct in a warehouse as part of an inventory system. The number of items remain-

ing for each product in a vending machine may be modeled by a bag.

-- Vending Machine----------
stock : bag Good
price : Good → 1

dom stock ⊆ dom price

 Fig. 4.5. Specification of Vending Machine Using Bags

The operation of a vending machine would require other operations such as
identifying the set of acceptable coins, checking that the customer has entered

sufficient coins to cover the cost of the good, returning change to the customer,

and updating the quantity on hand of each good after a purchase. A more de-
tailed examination is in [Dil:90].

4. Z Specification Language 85

4.7 Schemas and Schema Composition

Schema are used for specifying states and state transitions and they group all

relevant information that belongs to a state description. They employ notation to
represent before and after state (e.g., s and s’). The schemas in Z are visually

striking and the specification is presented in 2-dimensional graphic boxes.

There are a number of schema operations and conventions that allow
the specification of complex operations concisely and help to make Z specifica-

tions readable. These include schema inclusion, linking schemas with proposi-

tional connectives and the and conventions. Schema composition is
analogous to relational composition, and allows new schemas to be derived from

existing schemas.

A schema name S1 may be included in the declaration part of another

schema S2. The effect of the inclusion is that the declarations in S1 are now part

of S2 and the predicates of S1 are S2 are joined together by conjunction. If the

same variable is defined in both S1 and S2, then it must be of the same type in
both schemas.

-- S1---------- -- S2----------

x,y : S1; z :
--------- ---------
 x + y > 2 z = x + y
------------ ------------

 Fig. 4.6. Specification of S1 and S2

The result is that S2 includes the declarations and predicates of S1.

-- S2----------
x,y :
z :

 x + y > 2
 z = x + y

 Fig. 4.7. Schema Inclusion

Two schemas may be linked by propositional connectives such as S1 ∧ S2, S1 ∨
S2, S1 S2, and S1 ⇔ S2. The schema S1 ∨ S2 is formed by merging the decla-

ration of S1 and S2, and then combining their predicates by the logical ∨ opera-

tor. For example, S = S1 ∨ S2 yields:

-- S----------
x,y :
z :

 x + y > 2 ∨ z = x + y

 Fig. 4.8. Merging Schemas (S1∨ S2)

 86 Mathematical Approaches to Software Quality

The schema inclusion and linking of schemas employ normalization to convert
subtypes to maximal types and to employ a predicate to restrict the maximal

type to the subtype. This involves replacing declarations of variables (e.g., u : 1

..35 with u : Z and adding the predicate u > 0 and u < 36 to the predicate part of

the schema). A more detailed explanation is in [Dil:90].

The and conventions are used extensively in schemas. The notation
TempMap is used in the specification of schemas that involve a change of

state. It represents :

TempMap = TempMap ∧ TempMap’

-- TempMap-----------------
CityList, CityList’ : City
temp, temp’ : City +→ Z

dom temp = CityList
dom temp’ = CityList’

 Fig. 4.9. Specification of TempMap Schema

The notation TempMap is used in the specification of operations that do not
involve a change to the state. It represents:

-- TempMap-----------------
TempMap

 CityList = CityList’
 temp = temp’

 Fig. 4.10. Specification of TempMap Schemas

Schema composition is analogous to relational composition and allows new
specifications to be built from existing ones. It allows a way of relating the after
state variables of one schema with the before variables of another schema. The
composition of two schemas S and T (S ; T) is described in detail in [Dil:90] and
involves four steps:

Step Procedure
1. Rename all after state variables in S to

something new:

 S [s+/s’].

2. Rename all before state variables in T to the
same new thing: i.e.,

 T [s+/s].

 4. Z Specification Language 87

3. Form the conjunction of the two new sche-
mas:

 S [s+/s’] ∧T [s+/s].

4. Hide the variable introduced in step 1 and 2.

 S ; T = (S [s+/s’] ∧T [s+/s]) \ (s+)

 Table 4.1. Schema Composition

The example below is adapted from [Dil:90] and should make schema composi-
tion clearer. Consider the composition of S and T where S and T are defined as
follows:

-- S---------- -- T----------
x,x’,y? : x,x’ :

--------- ---------
 x’ = y? - 2 x’ = x + 1
------------ ------------

-- S1---------- -- T1----------
x,x+,y? : x+,x’ :

--------- ---------
 x+ = y? - 2 x’ = x+ + 1
------------ ------------

 Fig. 4.11. Specification of S1 and T1

S1 and T1 represent the results of step 1 and step 2 in Table 4.1 above. It in-

volves renaming x’ to x+ in S, and then renaming x to x+ in T. Step 3 and step 4
of Table 4.1 yield:

-- S1∧T1---------- -- S ; T----------
x,x+,x’,y? : x, x’, y? :

--------- ---------
 x+ = y? – 2 ∃x+: •
 x’ = x+ + 1 (x+ = y? – 2
------------ x’ = x+ + 1)

Fig. 4.12. Schema Composition

Schema composition is useful as it allows new specifications to be created from

existing ones.

4.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying
various operations. The formal specification is implemented by a programmer,

and mathematical proof may be employed to prove that a program meets its

specification. The Z specification language employs many constructs that are not

 88 Mathematical Approaches to Software Quality

part of conventional programming languages, and operations are specified by

giving their preconditions and postconditions.
Hence, there is a need to write an intermediate specification that is be-

tween the original Z specification and the eventual program code. This interme-

diate specification is more algorithmic and uses less abstract data types than a Z
specification. The intermediate specification is termed the design and the design

needs to be correct with respect to the specification, and the program needs to be

correct with respect to the design. The design is a refinement (reification) of the
state of the specification, and the operations of the specification have been de-

composed into those of the design.

The representation of an abstract data type like a set by a sequence is
termed data reification, and data reification is concerned with the process of

transforming an abstract data type into a concrete data type. The abstract and
concrete data types are related by the retrieve function, and the retrieve function

maps the concrete data type to the abstract data type. There are typically several

possible concrete data types for a particular abstract data type (i.e., refinement is
a relation), whereas there is one abstract data type for a concrete data type (i.e.,

retrieval is a function). For example, sets are often reified to unique sequences;

however, more than one unique sequence can represent a set, whereas a unique
sequence represents exactly one set.

The operations defined on the concrete data type need to be related to the

operations defined on the abstract data type. The commuting diagram property is
required to hold; i.e., for an operation on the concrete data type to correctly

model the operation on the abstract data type it is required that the following
property holds:

ret (σ τ) = (ret σ) (ret τ).

This is known as the commuting diagram property and it requires a proof that

the diagram in Fig. 4.13 below commutes.

Fig. 4.13. Refinement Commuting Diagram

In Z, the refinement and decomposition is done with schemas. It is re-

quired to prove that the concrete schemas are a valid refinement of the abstract

schemas, and this gives rise to a number of proof obligations. It needs to be

retr (σ),

retr (τ)
retr

(σ τ)

 (σ τ)

retr (σ) retr (τ)

 4. Z Specification Language 89

proved that the initial states correspond to one another, and that each operation

in the concrete schema is correct with respect to the operation in the abstract
schema, and also that it is applicable (i.e., whenever the abstract operation may

be performed the concrete operation may be performed also).

4.9 Proof in Z

Mathematicians employ rigorous proofs of theorems using technical and natural

language. Logicians employ formal proofs to prove theorems using proposi-

tional and predicate calculus. Formal proofs generally involve a long chain of

reasoning with every step of the proof justified. Long formal proofs require tool

support to prevent errors, as it is easy to make an invalid assumption in deduc-

tion. Rigorous proofs [Dil:90] have been described as being analogous to high

level programming languages and involve precise reasoning, whereas formal

proofs are analogous to machine language.
A rigorous mathematical proof includes natural language and mathe-

matical symbols and often many of the tedious details of the proof are omitted.

Most proofs in formal methods such as Z are concerned with cross-checking on

the details of the specification or the validity of the refinement, or proofs that
certain properties are satisfied by the specification. There are many tedious

lemmas to be proved, and tool support is therefore essential, as proofs by hand

are notorious for containing errors or jumps in reasoning. Machine proofs are
lengthy and unreadable, but help to avoid errors as every step in the proof needs

to be justified.

A formal mathematical proof consists of a sequence of formulae, where
each element is either an axiom or derived from a previous element in the series

by applying a fixed set of mechanical rules. The proof of various properties

about the programs increases confidence in the correctness of the program. Ex-
amples of proofs required during software development with Z include:

• Proof of invariant preservation

• Proof of validity of refinement steps

• Proof that specific properties are preserved in the refinement.

Tool support is required for software development with Z and this is discussed

in the next section.

 90 Mathematical Approaches to Software Quality

4.10 Tools for Z

There are a number of tools that support software development with Z. Perhaps,

the most widely known is the Z/EVES tool that is available from ORA4 in Can-
ada. The main features of the Z/EVES tool are:

Feature Description

Syntax checker Checks whether the Z syntax is correct.

Type checker Performs type checking.

Schema expansion Z/EVES allows a schema definition to
be expanded and simplified. The refer-

ences in the schema are expanded and
the theorem prover is employed to sim-

plify the results of the expansion.

Precondition calcula-

tion

The precondition is implicit in a Z

specification and Z/EVES allows the
precondition of a schema to be calcu-

lated. This requires interaction with the

theorem prover.

Domain checking These are proof obligations to ensure
that the operation is defined on its do-

main. The objective is to show that the

expression is defined on its domain and
is therefore meaningful. This helps to

avoid problems with undefinedness.

Theorem prover The Z/EVES theorem prover provides

automated support for proving theo-
rems as well as allowing the user to

guide the theorem prover.

 Table 4.2. Features of Z/EVES Tool

The tool includes a graphical user interface that allows the Z specifica-

tions to be entered. It supports most of the Z notation with the exception of the

unique existence quantifier. The Z/EVES tool may be introduced gradually in an
organization rather than using the full functionality of the tool initially.

 The Fuzz tool is an academic tool produced by Mike Spivey and allows

printing and type-checking of Z specifications. It is used with LaTeX and the Z
specification is entered in an ASCII file (in LaTeX format). It is then checked

for conformance to the Z standard and error messages are produced. It is avail-

able (at the cost of a license fee) from Mike Spivey at Oxford.
 There are many other academic and semicommercial tools available for

Z including RoZ that produces Z specifications from UML diagrams;5 CADiZ

4 ORA has decided to cease its distribution of Z/EVES from mid-2005. I am unclear at this stage as

to how future distribution and support of Z/EVES will be handled. The tool has been distributed to

users in over sixty two countries and it is available on Linux and Microsoft NT/XP.

 4. Z Specification Language 91

that prepares Z specification and performs type checking and is available from

the University of York;6 HOL which is a mechanical theorem proving system

based on higher-order logic and provides some support for Z; and ProofPower7

which is a suite of tools supporting specification and proof in higher-order logic

and Z. There is also an open-source project (CZT)8 from the Z community that is

aiming to build a set of tools for editing, typechecking, and animating formal

specifications in the Z specification language.

4.11 Summary

Z was developed at the Programming Research Group at Oxford University and

has been employed in both industry and academia. Z specifications are mathe-

matical and use a classical 2-valued logic. The specifications may be examined
mathematically and various results about the specification proved. Mathematics

helps to identify inconsistencies and gaps in the specification if they exist.

Z is a model-oriented approach and an explicit model of the state of an
abstract machine is given. The operations are defined in terms of their effect on

the state. Its main features include the visually striking schema calculus and a
mathematical notation that is similar to VDM. The schema calculus consists

essentially of boxes, and these boxes or schemas are used to describe operations

and states. The schema calculus enables schemas to be used as building blocks
to form larger specifications.

The schema calculus is a powerful means of decomposing a specifica-

tion into smaller pieces or schemas. This decomposition helps to ensure that a Z
specification is highly readable, as each individual schema is small in size and

self-contained. Exception handling may be addressed by defining schemas for

the exception cases, and then combining the exception schema with the original
operation schema. Mathematical data types are used to model the data in a sys-

tem.

Z is a highly expressive specification language and includes notation
for sets, functions, relations, bags, sequences, predicate calculus, and schema

calculus. It has been employed successfully in academia and industry.

5 This is a prototype tool produced as part of the Champollion project. I am not aware of any plan to

commercialize the tool. I am unclear as to which UML diagrams the tool can handle. Further infor-

mation is available on http://www-lsr.imag.fr/Les.Groupes/pfl/RoZ/.

6 Information on CADiZ is available on http://www-users.cs.york.ac.uk/~ian/cadiz/.
7 For further information on ProofPower please go to

http://www.lemmaone.com/ProofPower/index/.

8 Further information on CZT is available in http://czt.sourceforge.net/.

5

Vienna Development Method

5.1 Introduction

VDM dates from work done by the IBM research laboratory in Vienna in the

1960s. Their aim was to specify the semantics of the PL/1 programming lan-

guage. This was achieved by employing the Vienna Definition Language
(VDL), taking an operational semantic approach; i.e. the semantics of a lan-

guage are determined in terms of a hypothetical machine which interprets the

programs of that language [BjJ:82]. Later work led to the Vienna Development

Method (VDM) with its specification language, Meta IV.1 This concerned itself

with the denotational semantics of programming languages; i.e., a mathematical
object (set, function, etc.) is associated with each phrase of the language

[BjJ:82]. The mathematical object is the denotation of the phrase. The initial

application of VDM was to programming language semantics. Today, VDM is
mainly employed to formally specify software and includes a development

method.

The Vienna group was broken up in the mid-1970s and this led to the
formation of different schools of the VDM in diverse locations. These include

the Danish school led by Dines Bjørner;2 the English school led by Cliff Jones;3

and the Polish school led by Andrez Blikle. The various schools of VDM are
described in [Mac:90]. Further work on VDM and Meta-IV continued in the

1980s and an ISO standard (International Standard ISO/IEC 13817-1) for VDM

appeared in December 1996.
VDM is a model-oriented approach and this means that an explicit

model of the state of an abstract machine is given, and operations are defined in
terms of this state. Operations may act on the system state, taking inputs and

producing outputs and a new system state. Operations are defined in a precondi-

1 The name chosen is a pun on metaphor.

2 Dines Bjørner’s background is both academic (Technical University of Denmark abd Macau) and

industrial (IBM). He was key note speaker at IWFM’98 held in Cork, Ireland.

3 Cliff Jones has a background in academia (Manchester and Newcastle) and industrial (IBM and

Harlequin). He was one of the key note speakers for the first IWFM (Irish Workshop in Formal

Methods) series held in Dublin in 1997 for which the author was programme chair.

 5. Vienna Development Method 93

tion and postcondition style. Each operation has an associated proof obligation

to ensure that if the precondition is true, the operation preserves the system in-
variant. The initial state itself is, of course, required to satisfy the system invari-

ant. VDM uses keywords to distinguish different parts of the specification, e.g.,

preconditions and postconditions are introduced by the keywords pre and post
respectively. In keeping with the philosophy that formal methods specifies what

a system does as distinct from how, VDM employs postconditions to stipulate

the effect of the operation on the state. The previous state is then distinguished

new state (defined by a logical predicate relating the prestate to the poststate).

VDM is more than its specification language Meta IV (called VDM-SL
in the standardization of VDM) and is, in fact, a development method, with rules

to verify the steps of development. The rules enable the executable specification,
i.e., the detailed code, to be obtained from the initial specification via refinement

steps. Thus, we have a sequence S = S0, S1, ..., Sn = E of specifications, where S

is the initial specification, and E is the final (executable) specification:

S = S0 S1 S2 ... Sn = E.

Retrieval functions enable a return from a more concrete specification,
to the more abstract specification. The initial specification consists of an initial

state, a system state, and a set of operations. The system state is a particular do-

main, where a domain is built out of primitive domains such as the set of natural
numbers, etc., or constructed from primitive domains using domain constructors

such as Cartesian product, disjoint union, etc. A domain-invariant predicate may

further constrain the domain, and a type in VDM reflects a domain obtained in
this way. Thus, a type in VDM is more specific than the signature of the type,

and represents values in the domain defined by the signature, which satisfy the

domain invariant. In view of this approach to types, it is clear that VDM types
may not be “statically type checked”.

VDM specifications are structured into modules, with a module con-

taining the module name, parameters, types, operations, etc. Partial functions
arise naturally in computer science. The problem is that many functions, espe-

cially recursively defined functions, can be undefined or fail to terminate for

some arguments in their domain. VDM addresses partial functions by employing
nonstandard logical operators, namely the logic of partial functions (LPFs)

which can deal with undefined operands. This was developed by Cliff Jones

[Jon:90] and is discussed in detail later in the chapter.
Undefined values that arise in Boolean expression are handled by in-

troducing rules to deal with undefined terms: e.g., T ∨ ⊥ = ⊥ ∨ T = true; i.e.,
the truth value of a logical or operation is true if at least one of the logical oper-

ands is true, and the undefined term is treated as a don’t care value. The simi-
larities and differences between Z and VDM (the two most widely used formal

methods) are summarized below:

by employing hooked variables, e.g., v , and the postcondition specifies the

 94 Mathematical Approaches to Software Quality

Similarites and Differences of VDM/Z

VDM is a development method including a specification

language, whereas Z is a specification language only.

Constraints may be placed on types in VDM specifica-

tions but not in Z specifications.

Z is structured into schemas and VDM into modules.

The schema calculus is part of Z.

Relations are part of Z but not of VDM.

VDM employs the logic of partial functions (3-valued

logic), whereas Z is a classical 2-valued logic.

Preconditions are not separated out in Z specifications.

 Table 5.1. Similarities and Differences between VDM and Z.

EXAMPLE 5.1

The following is a very simple example of a VDM specification and is adapted

from [InA:91]. It is a simple library system that allows books to be borrowed
and returned. The data types for the library system are first defined and the op-

eration to borrow a book is then defined. It is assumed that the state is made up

of three sets and these are the set of books on the shelf, the set of books which
are borrowed, and the set of missing books. These sets are mutually disjoint. The

effect of the operation to borrow a book is to remove the book from the set of

books on the shelf and to add it to the set of borrowed books. The reader is re-
ferred to [InA:91] for a detailed explanation.

types
Bks = Bkd-id-set

state Library of
On-shelf : Bks

 Missing : Bks

 Borrowed : Bks

inv mk-Library (os, mb, bb) is-disj(os,mb,bb)
end

borrow (b:Bkd-id)
ex wr on-shelf, borrowed : Bks

pre b ∈ on-shelf

post on-shelf = on-shelf - {b} ∧
borrowed = borrowed ∪ {b}

 5. Vienna Development Method 95

• Type definitions

• Stated

• Invariant for the system

• Definition of the operations of the system.

The notation Bkd-id-set specifies that Bks is a set of Bkd-ids; e.g., Bks =

{b1,b2, …, bn}. The invariant specifies the property that must remain true for the
library system: i.e., the sets on-shelf, borrowed, and missing must remain mutu-

ally disjoint. The borrow operation is defined using preconditions and postcon-

ditions. The notation ext wr indicates that the borrow operation affects the state,
whereas the notation ext rd indicates an operation that does not affect the state.

VDM is a widely used formal method and has been used in industrial strength

projects as well as by the academic community. These include security-critical
systems and safety critical sectors such as the railway industry. There is tool

support available, for example, the IFAD VDM-SL4 toolbox. There are several
variants of VDM, including VDM++, an object-oriented extension of VDM, and

VDM , the Irish school of the VDM, which is discussed in the next chapter.

5.2 Sets

Sets are a key building block of VDM specifications. A set is a collection of

objects that contains no duplicates. The set of all even natural numbers less than

or equal to 10 is given by:

S = {2,4,6,8,10}.

There are a number of in-built sets that are part of VDM including:

Set Name Elements

B Boolean {true, false}

Naturals {0,1,….}

1
Naturals (apart from 0) {1,2,…}

Integers {…,-1,0,1,…}

Rational numbers {p/q : p,q ∈ q ≠ 0}

Real numbers

 Table 5.2. Built in Types in VDM.

4 As discussed earlier IFAD no longer supplies the VDM tools and CSK in Japan is the new pro-

vider of the VDM tools.

The VDM specification consists of:

 96 Mathematical Approaches to Software Quality

The empty set is a set with no members and is denoted by {}. The membership

of a set S is denoted by x ∈ S. A set S is a subset of a set T if whenever x ∈ S

then x ∈ T. This is written as S ⊆ T. The union of two sets S and T is given by S

∪ T. The intersection of two sets S and T is given by S ∩ T.
 Sets may be specified by enumeration (as in S = {2,4,6,8,10}). How-

ever, set enumeration is impractical for large sets. The more general form of
specification of sets is termed set comprehension, and is of the form:

 {set membership | predicate}.

For example, the specification of the set T = {x ∈ {2,4,6,8,10} | x > 5} denotes

the set T = {6,8,10}. The set Q = {x ∈ | x > 5 ∧ x < 8}denotes the set Q =

{6,7}.

The set of all finite subsets of a set S = {1,2} is given by:

S = {{},{1},{2},{1,2}}.

The notation S : A-set denotes that S is a set, with each element in S drawn from

A. E.g., for A = {1,2}, the valid values of are S = {}, S = {1}, S = {2}, or S =

{1,2}.

The set difference of two sets S and T is given by S – T where:

S – T = {x ∈ S | x ∈ S ∧ x ∉ T}

Given S = {2,4,6,8,10} and T = {4, 8, 12} then S – T = {2,6,10}.

Finally, the distributed union and intersection operators are considered. These

operators are applied to a set of sets.

 {S1,S2,…..Sn} = S1∩ S2∩….. ∩ Sn

 {S1,S2,…..Sn} = S1∪ S2∪….. ∪ Sn

The cardinality of a set S is given by card S. This gives the number of elements

in the set; for example, card {1,3} = 2. The notation Bks = Bkd-id-set in the

Example 5.1 above specifies that Bks is a set of Bkd-ids; e.g., Bks =

{b1,b2,…..bn}.

 5. Vienna Development Method 97

5.3 Sequences

Sequences are used frequently (e.g., the modeling of stacks via sequences) in

VDM specifications. A sequence is a collection of items that are ordered in a
particular way. Duplicate items are allowed, whereas in sets they are meaning-

less. A set may be refined to a sequence of unique elements.

A sequence of elements x1, x2,…,xn is denoted by [x1, x2,…,xn], and the
empty sequence is denoted by []. Given a set S, then S* denotes the set of all

finite sequences constructed from the elements of S.

The length of a sequence is given by the len operator:

len [] = 0
len [1,2,6] = 3.

The hd operation gives the first element of the sequence. It is applied to non-
empty sequences only:

hd [x] = x
hd [x,y,z] = x.

The tl operation gives the remainder of a sequence after the first element of the

sequence has been removed. It is applied to nonempty sequences only:

tl [x] = []

tl [x,y,z] = [y,z]

The elems operation gives the elements of a sequence. It is applied to both

empty and non-empty sequences:

elems [] = { }

elems [x,y,z] = {x, y,z}.

The indx operation is applied to both empty and nonempty sequences. It returns

the set {1,2, …n} where n is the number of elements in the sequence.

inds [] = { }

inds [x,y,z] = {1, 2, 3}

inds s = {1, … len s}.

Two sequences may be joined together by the concatenation operator:

[] [] = []

 [x,y,z] [a, b] = [x,y,z, a, b]

 [x,y] [] = [x, y].

 98 Mathematical Approaches to Software Quality

Two sequences s1 and s2 are equal if :

s1 = s2 ⇔ (len s1 = len s2)∧ (∀ i ∈ inds s1) (s1 (i) = s2(i))

Sequences may be employed to specify a stack. For example, a stack of (up to
250) integers is specified as:

 state Z-stack of

 stk : *

 inv-Z-stack : *
B

 inv-Z-stack (stk) len stk ≤ 250

 init-mk-Z-stack (stk)
 stk = []

 end
 Table 5.3. Specification of a Stack of Integers.

The push operation is then specified in terms of preconditions/postconditions as
follows.

 push (z :)
 pre len stk < 100

 post stk = [z] stk

5.4 Maps

Maps are employed frequently for modeling in VDM. A map is used to relate

the members of two sets X and Y such that each item from the first set X is asso-
ciated with only one item in the second set Y. Maps are also termed partial func-

tions. The map from X to Y is denoted by:

f : T = X →m Y

The domain of the map f is a subset of X and the range is a subset of Y. An ex-

ample of a map declaration is:

f : {Names →m AccountNmr}.

The map f may take on the values:

f = { }

f = {eithne 231, fred 315}.

 5. Vienna Development Method 99

The domain and range of f are given by:

 dom f = {eithne, fred}.

 rng f = {231, 315}.

The map overwrite operator f † g gives a map that contains all the maplets in

the second operand together with the maplets in the first operand that are not in

the domain of the second operand.5

For g = {eithne 412, aisling 294} then

f † g = {eithne 412, aisling 294, fred 315}.

The map restriction operator6 has two operands: the first operator is a set,
whereas the second operand is a map. It forms the map by extracting those ma-

plets that have the first element equal to a member of the set. For example:

 {eithne} {eithne 412, aisling 294, fred 315} = {eithne 412}.

The map deletion operator has two operands: the first operator is a set, whereas
the second operand is a map. It forms the map by deleting those maplets that

have the first element equal to a member of the set. For example:

{eithne, fred} {eithne 412, aisling 294, fred 315} = {aisling 294}

Total maps are termed functions, and a total function f from a set X to a set Y is

denoted by:

f : X Y

A partial function (map) is denoted by f : X →m Y, and may be undefined for
some values in X. Partial maps arise frequently in specifications, as often in

practice a function will be undefined for one or more values in its domain. For
example, the function f(x) = 1/x is undefined for x = 0. Consequently, if 1/0 arises

in an expression, then that expression is undefined.

5 f † g is the VDM notation for function override. The notation f ⊕ g is employed in Z.
6 The map restrictor and map deletion operators are similar to the Z domain restrictor and anti-

restriction operators.

 100 Mathematical Approaches to Software Quality

5.5 Logic in VDM

Logic has been discussed in detail earlier in this book. This section discusses the

logic of partial functions (LPFs) used in VDM to deal with terms that may be

undefined. It was developed by Cliff Jones [Jon:90], and is a 3-valued logic

where a logical term may be true, false, or undefined. The truth functional op-

erators in this 3-valued logic are:

Q T F ⊥ Q T F ⊥
P P∧Q P P∨Q

T T F ⊥ T T T T

F F F F F T F ⊥
⊥ ⊥ F ⊥ ⊥ T ⊥ ⊥

 Fig. 5.1. Conjunction Fig. 5.2. Disjunction

The conjunction of P and Q is true when both P and Q are true; false if

one of P or Q is false, and undefined otherwise. The operation is commutative.

The disjunction of P and Q (P ∨ Q) is true if one of P or Q is true; false if both P

and Q are false; and undefined otherwise. The implication operation (P Q) is

true when P is false or when Q is true; it is undefined otherwise7.

Q T F ⊥ Q T F ⊥
P P Q P P≡Q

T T F ⊥ T T F ⊥
F T T T F F T ⊥
⊥ T ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

 Fig. 5.3. Implication Fig. 5.4. Equivalence

The equivalence operation (P≡Q) is true when both P and Q are true or

false; it is false when P is true and Q is false (or vice versa); and it is undefined

otherwise. The not operator (¬) is a unary operator such ¬A is true when A is

false, false when A is true, and undefined when A is undefined.

A ¬A

T F

F T

⊥ ⊥
 Fig. 5.5. Disjunction

7 The problem with 3-valued logic is that they are less intuitive than classical 2-valued logic.

 5. Vienna Development Method 101

It is clear from the truth table definitions that the result of the operation

may be known immediately after knowing the value of one of the operands (e.g.,

disjunction is true if P is true irrespective of the value of Q). The law of the ex-

cluded middle: i.e., A∨ ¬A = true does not hold in the 3-valued logic of partial

functions. However, this is reasonable [Jon:90] as one would not expect the fol-

lowing to be true:

(1/0 = 1) ∨ (1/0 ≠1).

5.6 Data Types and Data Invariants

Larger specifications require more complex data types. The VDM specification

language allows composite data types to be created from their underlying com-

ponent data types. For example, the composite data type Date is defined as fol-

lows [InA:91]:

Date = compose Date of

 year : {2000,…,3000}

 month {1,...,12}

 day : {1,...,31}

 end

Table 5.4. Composite Data Types in VDM.

A make function is employed to construct a date from the components

of the date; i.e., the mk-Date function takes three numbers as arguments and

constructs a date from them.

mk-Date : {2000,...,3000} x {1,...,12} x {1,...,31} Date

For example, the date of 5th August 2004 is constructed as follows:

mk-Date (2004, 8, 5).

Selectors are employed to take a complex data type apart into its com-

ponents. The selectors employed for date are day, month, year. Hence, the se-

lection of the year component in the date of 5th August 2004 is:

mk-Date : (2004, 8, 5). year = 2004.

The observant reader will note that the definition of the Date data type above

allows invalid dates to be present: e.g., 29th February 2001 and 31st November

2004. Hence, what is required is a predicate to restrict elements of the data type

to be valid dates. This is achieved by a data invariant.

 102 Mathematical Approaches to Software Quality

Inv-Date : Date B

Inv-Date (dt)

 let mk-Date (yr, md, dy) = dt in

 (md ∈ {1,3,5,7,8,10,12} ∧ dy ∈{1,...,31})

∨ (md ∈ {4,6,9,11} ∧ dy ∈{1,...,30})

∨ (md =2 ∧ isleapyear(yr) ∧dy ∈{1,...,29})

 ∨ (md =2 ∧ ¬isleapyear(yr) ∧dy ∈{1,..,28})

Any operation that affects the date will need to preserve the data invariant. This

gives rise to a proof obligation for each operation that affects the date.

5.7 Specification in VDM

An abstract machine (sometimes called object) consists of the specification of a

data type together with the operations on the data type. The production of a large

specification involves [InA:91]:

1. Identifying and specifying the abstract machines.

2. Defining how these machines fit together and are controlled to
 provide the required functionality.

The abstract machines may be identified using design tools such as data flow
diagrams and object-oriented design.8 Once the abstract machines have been

identified there are then two further problems to be addressed.

1. How are the abstract machines to be used?

(e.g., users or other programs?).

2. How are the abstract machines to be implemented in code?9

VDM-SL specifications are like programs except they are not executa-
ble. However, one important difference is that there are no side effects in VDM-

SL expressions. Side effects are common in imperative programming languages

such as C or Pascal due to the use of the assignment statement which has the
effect of modifying the values of the variables. Functional programming lan-

guages such as Miranda or Haskell do not employ assignment and therefore

there are no side effects. This means that the value of an expression remains the
same throughout the execution of the program, whereas this is not the case in C

8 Other approaches would be to use some of the ideas of Parnas on module decomposition or to

employ methods such as UML to identify the classes required.

9 The implementation in code generally requires refinement of the abstract machine into more con-

crete machines until the executable code is eventually produced. This is discussed in the next sec-

tion.

 Table 5.5. Composite Data Invariant for Composite Date Data Type.

 5. Vienna Development Method 103

or Pascal. The VDM-SL specification language does not contain side effects and

so the value of an expression remains constant throughout the specification.
The VDM specification is structured into type definitions, state defini-

tions, an invariant for the system, the initial state, and the definition of the op-

erations of the system. These are described in the table below:

Name Description

Type definitions The type definitions specify the

data types employed. These in-

clude the built-in sets, or sets con-
structed from existing sets. A

domain-invariant predicate may

further constrain the definition. A
type in VDM is more specific

than the signature of the type, and

represents values in the domain
defined by the signature, which

satisfy the domain invariant.

State definitions This is the definition of the col-

lection of stored data. The opera-
tions access/modify the data.

(Data-)Invariant for the

system

This describes a condition that

must be true for the state through-

out the execution of the system.

Initial value of the state This specifies the initial value of
the state.

Definition of operations The operations on the state are

defined in terms of preconditions
and postconditions. The keywords

rd and wr indicate whether the

operation changes the state.

The whole of the development process is based on the formal specifica-

tion, and it is therefore essential that the specification is correct. It is important
in a sense to prove that various properties are true of the specification and to

thereby provide confidence that the specification is correct. A description of the
development of the specification of the library system is presented in [InA:91].

Table 5.6. Structure of VDM Specification.

 104 Mathematical Approaches to Software Quality

5.8 Refinement

The development of executable code from a VDM specification involves break-

ing down the specification into smaller specifications (each smaller specification
defines an easier problem) [InA:91]. Each smaller specification is then tackled

(this may involve even smaller subspecifications) until eventually the implemen-

tation of the code that satisfies each smaller specification is trivial as are the
corresponding proofs of correctness. The code fragments are then glued together

using the programming language constructs of the semicolon, the conditional

statement, and the while loop.
 At each step of the process a proof of correctness is conducted to en-

sure that the refinement is valid. The approach allows a large specification to be

broken down to a smaller set of specifications that can be translated into code.
The approach involves deriving equivalent specifications to existing specifica-

tions. A specification OP’ is equivalent to a given specification OP if any pro-

gram that satisfies OP’ also satisfies OP. The formal definition of equivalence
is:

1. ∀i ∈State . pre-Op(i) pre-OP’(i)

2. ∀i,o ∈State . pre-Op(i) ∧ post-Op’(i,o) post-OP(i,o)

The idea of a program satisfying its specification can be expanded to a specifica-
tion satisfying a specification as follows:

OP’ sat OP if

1. ∀i ∈State . pre-Op(i) pre-OP’ (i)

2. ∀i,o ∈State . pre-Op(i) ∧ post-Op’(i,o) post-OP(i,o)

3. ∀i ∈State . pre-Op’ (i) ∃o ∈State . post-OP’ (i,o).

The formal definition requires that whenever an input satisfies the pre-
condition of OP, then it must also satisfy the precondition of OP’. Further, the

two specifications must agree on an answer for any input state variables that

satisfy the precondition for OP. Finally, the third part expresses the idea of a
specification terminating (similar to a program terminating). It expresses the

requirement that the specification is implementable.
The production of a working program that satisfies the specification is

evidence that a specification is satisfiable. There is a danger that the miracle

program could be introduced while carrying out a program refinement. The
miracle program is a program that has no implementable specification:

miracle

pre true

post false

Clearly, an executable version of miracle is not possible as the miracle

program must be willing to accept any input and produce no output. Refinement

 5. Vienna Development Method 105

is a weaker form of satisfaction (and allows the miracle program). It is denoted

by the operator.

A sat B B A

A B and B is implementable B sat A

S R1 R2 ... Rn p ∧ p is executable

 p sat S

5.9 Tools for VDM

Various tools (academic and commercial) have been developed for VDM. These
tools include syntax checkers to check the syntactic validity of the formal speci-

fication, specialized editors, tools to support refinement, and code generators to

generate a high-level programming language from the formal specification, and
theorem provers that are employed to assist with proof.

The earliest tools for VDM were academic rather than commercial and

this includes work done at Manchester University by Cliff Jones and others on

the Mural tool. The development of the Mural system10 involved the collabora-

tion of Rutherford Laboratories and ICL as industrial partners.

 The main part of the Mural system is a proof assistant that supports
reasoning about formal specifications. It allows the various proof obligations

associated with a formal specification to be carried out thereby ensuring the in-
ternal consistency of the specification. Mural also contains a VDM support tool

to construct specifications and support refinement. This is done using the built-

in structure editor for writing VDM specifications or reading a file generated by
the Adelard Specbox tool (that has been syntactically checked). Mural has a

good user interface which aims to make the interaction with the system as easy

as possible.
The SpecBox tool has been developed by Adelard. This tool provides a

syntax checking tool of VDM specifications and also provides simple semantic

checks. It allows the facility to generate a LaTeX file to enable the specifications
to be printed in mathematical notation. Finally, it includes a translator to the

Mural proof assistant.11

Perhaps, the most widely known VDM support tool is the IFAD VDM-
SL Toolbox (now renamed to VDMTools). This tool was originally developed

by IFAD based in Odense, Denmark, but IFAD has recently sold the Toolbox to

10 The kernel of Mural was specified in VDM and is an example of the formal methods community

taking its own medicine. However, the Mural tool was never commercialized and it appears that the

work in Manchester University and Appleton is no longer taking place. I have heard (from John

Fitzgerald) that the Centre for Software Reliability (CSR) plans to put the Mural book on-line.

11 The tool needs to be updated to be compatible with the ISO/IEC 13817-1 standard for VDM, as it

is based on an earlier draft of the standard. I am unclear as to how widely the SpecBox tool is used.

 106 Mathematical Approaches to Software Quality

the CSK Group of Japan (an information technology company employing about

10,000 people worldwide). CSK plans to make the tools more widely available
and further details are available from VDM_SP@cii.csk.co.jp or via the VDM

web inquiry form at (https://www.csk.co.jp/support_e/vdm.html) on the CSK

web site.
The original IFAD Toolbox provided syntax and semantic checking of

VDM specifications, LaTeX pretty printing, and a code generator to convert

from VDM-SL to C++. It was then extended to provide support to both VDM-
SL and VDM++ (the object-oriented extension to VDM). The main features of

the VDMTools for VDM++ are:

Functionality Description

Specification manager Keeps track of status of classes in the

specification.

Syntax checker Checks whether VDM++ syntax is
correct.

Type checker Identifies misuses of values and opera-

tors.

Interpreter and debug-

ger

Allows execution of executable con-

structs in VDM++. This provides a
running prototype. The Debugger al-

lows break-points to be set and inspec-

tion of variables within scope.

Integrity Examiner This includes checks for integrity vio-
lations (e.g., violations of invariants,

preconditions, and postconditions).

Test facility This allows the execution of a suite of

test cases and test coverage information
may be recorded.

Automatic code gen-

erator

Automatic generation of C++ and Java

code from VDM++ specifications (for
95% of all VDM++ constructs). The

remaining 5% requires user-defined

code for the nonexecutable parts of the
specification.

Corba compliant API This allows other programs to access a

running toolbox through a Corba com-

pliant API.

Rose to VDM++ link This provides a bidirectional link be-
tween the Toolbox and Rational Rose

thereby providing a bidirectional link

between VDM++ and UML.12

Java to VDM++ trans- This allows existing Java applications

12 The Rational Rose tool is becoming a legacy tool as the Rational Software Architect (RSA) tool

and Requisite Pro tool are the next generation of UML tools from IBM/Rational.

 5. Vienna Development Method 107

lator to be reverse engineered to VDM++.

This is useful if new development
needs to take place on legacy Java

software.
 Table 5.7. Functionality of VDM Tools.

Further information on the VDM tools is available on

(http://www.vdmbook.com/tools.php). The Centre for Software Reliability in

the United Kingdom (http://www.csr.ncl.ac.uk/) may also be contacted for up to
date information on the VDM tools.

Finally, there is an open source project aimed at generating new gen-

eration tools for VDM++ that has recently commenced. Further information on
this open source project is available at http://www.overturetool.org/.

5.10 Summary

VDM dates from work done by the IBM research laboratory in Vienna in the

1960s. It includes a formal specification language (originally called Meta IV)
but recently standardized as an ISO standard (International Standard ISO/IEC

13817-1). VDM includes a formal specification language and a method to de-

velop high-quality software. The Vienna group was broken up in the mid-1970s
and this led to the formation of different schools of the VDM in diverse loca-

tions. Further work on VDM and Meta-IV continued in the 1980s and standards

for VDM (VDM-SL) appeared in the 1990s.
It is a model-oriented approach, which means that an explicit model of

the state of an abstract machine is given, and operations are defined in terms of

this state. Operations are defined in a precondition and postcondition style. Each
operation has an associated proof obligation to ensure that if the precondition is

true, then the operation preserves the system invariant. VDM employs postcon-

ditions to stipulate the effect of the operation on the state. The postcondition
specifies the new state using a predicate that relates the prestate to the poststate.

VDM is both a specification language and a development method. Its
method provides rules to verify the steps of development and enable the execu-

table specification, i.e., the detailed code, to be obtained from the initial specifi-

cation via refinement steps:

S = S0 S1 S2 ... Sn = E

Retrieval functions enable a return from a more concrete specification,
to the more abstract specification. The initial specification consists of an initial

state, a system state, and a set of operations.

VDM specifications are structured into modules, with a module con-
taining the module name, parameters, types, and operations. VDM employs the

logic of partial functions (LPFs) to deal with undefined operands. VDM has

been used in industrial-strength projects as well as by the academic community.

 108 Mathematical Approaches to Software Quality

There is tool support available, for example, the IFAD VDM-SL toolbox. There

are several variants of VDM, including VDM++, an object-oriented extension of
VDM, and VDM , the Irish school of the VDM, which is discussed in the next

chapter.

6

Irish School of VDM

6.1 Introduction

The Irish School of VDM is a variant of standard VDM, and is characterized by

[Mac:90]1 its constructive approach, classical mathematical style, and its terse

notation. In particular, this method combines the what and how of formal meth-
ods in that its terse specification style stipulates in concise form what the system

should do; furthermore, the fact that its specifications are constructive (or func-

tional) means that that the how is included with the what. However, it is impor-

tant to qualify this by stating that the how as presented by VDM♣ is not directly
executable, as several of its mathematical data types have no corresponding

structure in high-level programming languages or functional languages. Thus a

conversion or reification of the specification into a functional or higher-level
language must take place to ensure a successful execution. It should be noted

that the fact that a specification is constructive is no guarantee that it is a good

implementation strategy, if the construction itself is naive. This issue is consid-
ered (cf. pp. 135-7 in [Mac:90]), and the example considered is the construction

of the Fibonacci series.

The Irish school follows a similar development methodology as in
standard VDM and is a model-oriented approach. The initial specification is

presented, with initial state and operations defined. The operations are presented

with preconditions; however, no postcondition is necessary as the operation is
“functionally” i.e., explicitly constructed. Each operation has an associated

proof obligation; if the precondition for the operation is true and the operation is
performed, then the system invariant remains true after the operation. The proof

of invariant preservation normally takes the form of constructive proofs. This is

especially the case for existence proofs, in that the philosophy of the school is to

1 This chapter is dedicated to Dr. Mícheal Mac An Airchinnigh of Trinity College, Dublin who

founded the Irish school of VDM. Mícheal is a former Christian brother and has great wit and cha-

risma. He is also an excellent orator and I remember a very humorous after dinner speech made in

Odense, Denmark at the FME’93 conference. In the speech, he explained why he was Aristotelian

and said: “Why am I Aristotelian? Well, my wife is and I can’t be Platonic with her.” He also staged

an alternate version of the Emperors New Clothes as part of the entertainment at FME’93. This

included participation from Michael Butler, Andrew Butterfield, and Eoin McDonnell.

 110 Mathematical Approaches to Software Quality

go further than to provide a theoretical proof of existence; rather the aim is to

exhibit existence constructively.
The emphasis is on constructive existence and the implication of this is

that the school avoids the existential quantifier of predicate calculus. In fact,

reliance on logic in proof is kept to a minimum, and emphasis instead is placed
on equational reasoning rather than on applying the rules of predicate calculus.

Special emphasis is placed on studying algebraic structures and their mor-

phisms. Structures with nice algebraic properties are sought, and such a structure
includes the monoid, which has closure, associativity, and a unit element. The

monoid is a very common structure in computer science, and thus it is appropri-

ate to study and understand it. The concept of isomorphism is powerful, reflect-
ing that two structures are essentially identical, and thus we may choose to work

with either, depending on which is more convenient for the task at hand.
The school has been influenced by the work of Polya and Lakatos. The

former [Pol:57] advocated a style of problem solving characterized by solving a

complex problem by first considering an easier subproblem and considering
several examples, which generally leads to a clearer insight into solving the

main problem. Lakatos’s approach to mathematical discovery (cf. [Lak:76]) is

characterized by heuristic methods. A primitive conjecture is proposed and if
global counterexamples to the statement of the conjecture are discovered, then

the corresponding “hidden lemma” for which this global counterexample is a

local counterexample is identified and added to the statement of the primitive
conjecture. The process repeats, until no more global counterexamples are

found. A skeptical view of absolute truth or certainty is inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the
problem is that recursively defined functions may be undefined, or fail to termi-
nate for several of the arguments in their domain. The logic of partial functions

(LPFs) is avoided, and instead care is taken with recursive definitions to ensure

termination is achieved for each argument. This is achieved by ensuring that the
recursive argument is strictly decreasing in each recursive invocation. The ⊥
symbol is typically used in the Irish school to represent undefined or unavailable

or do not care. Academic and industrial projects2 have been conducted using the

method of the Irish school, but at this stage tool support is limited.

EXAMPLE

The following is the equivalent VDM♣ specification of the earlier example of a
simple library presented in standard VDM.

Bks = Bkd-id

Library = (Bks × Bks × Bks)

2 This includes practical industrial work with Motorola in the US and participation in the EU

SCORE project (part of the RACE II programme). The latter included work in feature interaction

modeling and detection which is important in the telecoms sector.

 6. Irish School of VDM 111

inv- Library (Os, Ms, Bw) Os ∩ Ms = Ø

 ∧ Os ∩ Bw = Ø

 ∧ Bw ∩ Ms = Ø

Bor: Bkd-id (Bks × Bks) (Bks × Bks)

Bor [b] (Os, Bw) ([b] Os, Bw ∪{b})

pre-Bor: Bkd-id (Bks × Bks) B

pre-Bor [b] (Os, Bw) [b] Os

There is, of course, a proof obligation to prove that the Bor operation

preserves the invariant, i.e., that the three sets of borrowed, missing, or on the
shelf remain disjoint after the execution of the operation. Proof obligations re-

quire a mathematical proof by hand or a machine-assisted proof to verify that

the invariant remains satisfied after the operation.

pre-Bor [b] (Os, Bw) ∧ ((Os’,Bs’) = Bor [b] (Os, Bw))

inv-Library (Os’, Ms’, Bw’)

6.2 Mathematical Structures and Their Morphisms

The Irish school of VDM uses mathematical structures to organize the modeling

of systems and to organize proofs. There is an emphasis on identifying useful

structures that will assist modeling and constructing new structures from exist-
ing ones. Some well-known structures used in VDM include semigroups and

monoids

A semigroup is a structure A with a binary operation * such that the closure and

associativity properties hold:

a * b ∈ A ∀ a,b ∈A

(a * b) * c = a * (b * c) ∀ a, b ,c ∈A

Examples of semigroups include the natural numbers under addition, nonempty

sets under the set union operation, and nonempty sequences under concatena-
tion. A semi-group is commutative if:

a * b = b * a ∀ a,b ∈A.

A monoid M is a semigroup that has the additional property that there is an iden-

tity element u ∈ M such that:

a * b ∈ M ∀ a,b ∈M

Os, Ms, Bw ∈ Bks

 112 Mathematical Approaches to Software Quality

(a * b) * c = a * (b * c) ∀ a, b ,c ∈M

a * u = a = u * a ∀ a ∈M

Examples of monoids include the integers under addition, sets under the set un-

ion operation, and sequences under concatenation. The identity element is 0 for

the integers, the empty set ∅ for set union, and the empty sequence Λ for se-

quence concatenation. A monoid is commutative if a * b = b * a ∀ a,b ∈M. A

monoid is denoted by (M, *, u).

A function h : (M, ⊕, u) → (N, ⊗, v) is structure preserving (morphism) between

two monoids (M, ⊕, u) and (N, ⊗, v) if the same result is obtained by either:

1. Evaluating the expression in M and then applying h to the result.

2. Applying h to each element of M and evaluating the result under ⊗.

holds and that the image of the identity of M is the identity of N.

h(m1 ⊕ m2) = h(m1) ⊗ h(m2) ∀m1, m2 ∈M

h(u) = v

Fig. 6.1. Monoid Homomorphism

A morphism h : (M, ⊕, u) → (M, ⊕, u) is termed an endomorphism.

EXAMPLES

Consider the monoid of sequences (Σ*, ∩, Λ)3 and the monoid of natural num-
bers (,+,0). Then the function len that gives the length of a sequence is a mon-

oid homomorphism from (Σ*, ∩, Λ) to (,+,0). Clearly, len(Λ) = 0 and the
commuting diagram property holds:

3 The Irish VDM notation includes sets, sequences and functions and is described later in this chap-

ter. One striking feature is its use of the Greek alphabet, and the above defines the monoid of se-

quences over the alphabet Σ. The concatenation operator is denoted by ∩ and the empty sequence is

denoted by Λ. The Greek influence is also there in the emphasis on constructive proofs such as the

proofs in Euclidean geometry whereby the existence of an object is demonstrated by its construction.

h(m1),

h(m2)
h(m1 ⊕ m2)

 (m1 ⊕ m2)

h(m1) ⊗ h(m2)

A monoid homomorphism h : (M, ⊕, u) → (N, ⊗, v) is expressed in

the commuting diagram below. It requires that the commuting diagram property

 6. Irish School of VDM 113

Fig. 6.2. Len Homomorphism.

The second example considered is from the monoid of sequences to the monoid

of sets under set union. Then the function elems that gives the elements of a se-

quence is a monoid homomorphism from (Σ*, ∩, Λ) to (Σ, ∪, ∅). Clearly,

elems(Λ) = ∅ and the commuting diagram property holds.

Consider the set removal operation [S] on the monoid of sets under
set union. Then the removal operation is a monoid endomorphism from (Σ, ∪,
∅) to (Σ, ∪, ∅).

[S] (S1 ∪ S2) = [S] (S1) ∪ [S] (S2) ∀S1, S2 ⊆ S

[S] (∅) = ∅

Fig. 6.3. Set Removal Endomorphism.

Set restriction ([S]) is also an endomorphism on (Σ, ∪, ∅).

COMMENT (MONOIDS AND MORPHISMS)

Monoids and their morphisms are useful and are used widely in VDM♣. They
are well-behaved structures and allow compact definitions of functions and also

simplify proof. The use of monoids and morphisms helps to produce compact

models and proofs.

len(σ),

len(τ) len (σ ∩τ)

 (σ ∩τ)

len(σ) + len(τ)

[S] (S1)

[S] (S2)
[S] (S1 ∪ S2)

(S1 ∪ S2)

[S] (S1) ∪ [S] (S2)

 114 Mathematical Approaches to Software Quality

6.3 Models and Modeling

A model is a representation of the physical world. However, the model is not the

reality, but rather a simplification of the reality. Therefore, models do not in-
clude all aspects of the reality, but it is important that the model includes all

essential aspects of the reality. Models are generally mathematical representa-

tions of the physical world.
 The adequacy of a model is a key concern. For example, the model of

the Tacoma Narrows Bridge4 did not include aerodynamic forces, and this in-

adequacy in the model had a major influence on the eventual collapse of the
bridge. It is essential to explore the consequences of a model, and to determine if

the model is an adequate representation of the reality. Occasionally, there may
be more than one model to explain the reality. For example, Ptolemy’s Cosmo-

logical Model and the Copernican Model. Both models are adequate at explain-

ing aspects of navigation. In fact, the Copernican model was less accurate than
Ptolemy’s model, until the former was revised by Kepler [Kuh:70]. Occam’s

Razor (or the Principle of Parsimony) is a key principle underlying modeling.

The principle is stated as follows: Entia non sunt multiplicanda praeter necessi-
tatem; this essentially means that the number of entities required to explain any-

thing should be kept to a minimum. The implication of this principle is that the

modeler should seek the simplest model with the least number of assumptions.

The principle is attributed to the medieval philosopher William of Occam5.

The key application of Occam’s Razor in practice is to remove all su-

perfluous concepts which are not needed to explain the phenomenon. The net
result is a crisp and simpler model. In theory, this should reduce the likelihood

of introducing inconsistencies and errors into the model. Such a model captures
the essence of the reality.

In summary, a model is an abstraction or simplification of reality.

Model exploration enables an informed decision to be made on the adequacy or
otherwise of the model. The model should be kept as simple as possible. The

model itself then serves as a formal means of testing hypotheses or ideas about

some aspects of the world. This involves the formulation of questions which are
then answered in terms of the model. Mathematical models offer a valuable

means for the examination of aspects of the world.

6.4 Sets

Sets have been discussed earlier in the book and this section focuses on their use

in VDM♣. A set is a collection of objects all drawn from the same domain. Sets

4 The Tacoma Narrows Bridge (known as Galloping Gertie) collapsed in 1940 due to a design flaw.

Further details are in [ORg:02].

5 William of Occam was a medieval philosopher and theologian. Occam is a village in Surrey, Eng-

land.

 6. Irish School of VDM 115

may be enumerated by listing all of their elements. Thus, the set of all even

natural numbers less than or equal to 10 is:

 {2,4,6,8,10}.

The membership of a set S is denoted by x ∈ S. There is also another notation

for set membership based on the characteristic function:

χ : Σ → Σ→ B

χ[x] S x ∈ S.

The empty set is denoted by ∅. Various operations on sets such as un-

ion, intersection, difference, and symmetric difference are employed. The union

of two sets S and T is given by S ∪ T, and their intersection by S ∩ T. The set

restriction operation for S on T restricts T to its elements that are in S; it is given

by:

 [S] T = S ∩ T.

This is also written in infix form as:

S T =S ∩ T.

The set difference (or set removal operation) of two sets S, T is given by S \ T. It

is also written as:

[T] S = S \ T

or in infix form as:

T S = S \ T.

The symmetric difference operation is given by:

S T (S ∪ T) \ (S ∩ T) .

The number of elements in a set S is given by the cardinality function card(S).

card(S) = #S = |S|.

The powerset of a set X is the set of all subsets of X. It is denoted by X and

includes the empty set. The notation ’Y denotes the set of non-empty subsets

of Y: i.e., [∅] Y.

The set S is said to be a subset of T (S ⊆ T) if whenever s ∈S then s ∈T. The

distributed union of set of sets is defined as:

∪/ {S1, S2,…,Sn}= S1∪ S2∪ … ∪ Sn

 116 Mathematical Approaches to Software Quality

6.5 Relations and Functions

There is no specific notation for relations in VDM♣. Instead, relations from a set
X to a set Y are modeled by either:

• R ⊆ (X × Y)

• A partial functions ρ of the form ρ: X → ’ Y.

An element x is related to y if:

• (x,y) ∈R

 or

• χ[x] ρ ∧ y ∈ ρ(x).

The structure (X → ’ Y) is isomorphic to (X x Y).

The functional view of relations uses the indexed monoid (X → ’Y,

,) and this allows the familiar relational operations such as relational inverse,

relational composition, etc., to be expressed functionally. For example, the in-

verse of a relation ρ: (X → ’ Y) is of the form ρ-1: (Y → ’X), and the relation

inverse may be defined constructively.

A function takes values from one domain and returns results in another

domain. The map μ : X →Y denotes a partial function from the set X to the set Y.
The result of the function for a particular value x in the domain of μ is given by

μ (x). The empty map from X to Y is denoted by .
The domain of a map μ is given by dom μ, and it gives the elements of

X for which the map μ is defined. The notation x ∈dom μ indicates that the ele-
ment x is in the domain of μ. This is often written with a slight abuse of notation

as x ∈ μ. Clearly, dom = ∅ and dom {x →y} = {x}. The domain of μ is X if μ
is total.
 New maps may be constructed from existing maps using function over-

ride. The function override operator was defined in Z and the operator combines
two functions of the same type to give a new function of the same type. The

effect of the override operation (μ †) is that an entry {x y} is removed from
the map μ and replaced with the entry {x z} in .

The notion f ⊕ g is employed for function override in Z. It indicates

that f is overridden by g. The notation (μ †) is employed for function override
in VDM .

 (μ †) (x) = (x) where x ∈ dom

 (μ †) (x) = μ (x) where x∉ dom ∧ x ∈ dom μ

 6. Irish School of VDM 117

Maps under override form a monoid (X →Y, †,) with the empty map the
identity of the monoid. The domain (dom) operator is a monoid homomor-
phisms. The domain homomorphism is of the form:

 dom : (X →Y, †,) (X, ∪, ∅).

 dom {x y} = {x}

Domain removal and domain restriction operators were discussed for sets in the

previous section. The domain removal operator ([S]) and the domain restriction
operator ([S]) are endomorphisms of (X →Y, †,). The domain removal op-

erator ([S]) is defined as follows:

[S] : (X →Y, †,) (X →Y, †,)

 S] {x y} (x ∈ S)

[S] {x y} {x y} (x ∉ S)

The domain restriction operator ([S]) is defined as follows:

[S] : (X →Y, †,) (X →Y, †,)

[S] {x y} {x y} (x ∈ S)

[S] {x y} (x ∉ S)

The restrict and removal operators are extended to restriction/removal from an-
other map by abuse of notation:

[μ] = [dom μ]
[μ] = [dom μ] .

Given an injective total function f : (X →W) and a total function g : (Y →Z) then

the map functor (f → g) is a homomorphism of

(f → g) : (X →Y, †,) (W →Z, †,)

(f → g) {x y} = {f(x) g(y)}.

 118 Mathematical Approaches to Software Quality

Currying is used extensively in VDM♣ and the term is named after the logician

Haskell Curry.6 Currying involves replacing a function of n arguments by the

application of n functions of 1-argument. Consider the function f : X x Y→ Z.
Then the usual function application is:

f (x,y) = z.

The curried form of the above is application is:

f : X → Y→ Z

f [x] is a function : Y→ Z and f [x] y = z

6.6 Sequences

Sequences are ordered lists of zero or more elements from the same set. The set
of sequences from the set Σ is denoted by Σ*, and the set of nonempty sequences
is denoted by Σ+. Two sequences σ and τ are combined by sequence concatena-
tion to give σ ∩ τ. The structure (Σ*, ∩, Λ) is a monoid under sequence concate-
nation, and the identity of the monoid is the empty sequence Λ.
 The sequence constructor operator (-:-) takes an element x from the set

Σ, and a sequence σ from Σ*, and produces a new sequence σ‘ that consists of

the element x as the first element of σ‘ and with the remainder of the sequence

given by σ.

σ

‘

= x: σ

The most basic sequence is given by:

 σ = x: Λ

A sequence constructed of n elements x1,x2,… xn-1, xn (in that order) is given by:

x1 : (x2 : …: (xn-1 : (xn : Λ))...).

This is also written as:

x1,x2,… xn-1, xn

The head of a nonempty sequence is given by:

 hd : Σ+→ Σ

6 Haskell Brooks Curry was a 20th century mathematical logician. He developed the ideas of Schön-

finkel further on combinatory logic and later applied it to the foundations of mathematics.

 hd (x : σ) = x.

 6. Irish School of VDM 119

The tail of a nonempty sequence is given by:

 tl : Σ+→ Σ*

 tl (x : σ) = σ.

Clearly, for a nonempty sequence σ it follows that:

 hd (σ) : tl (σ) = σ.

The function len gives the length of a sequence (i.e., the number of elements in

the sequence), and is a monoid homomorphism from (Σ*, ∩, Λ) to (,+,0). The

length of the empty sequence is clearly 0: i.e., len(Λ) = 0. The length of a se-

quence is also denoted by |σ| or #σ.

The elements of a sequence are given by the function elems. This is a monoid

homomorphism from (Σ*, ∩, Λ) to (Σ, ∪, ∅).

elems : Σ*→ Σ
elems (Λ)= ∅
elems (x : σ) = {x} ∪ elems (σ)

The elements of the empty sequence is the empty set ∅. The elems homomorph-
ism loses information (e.g., the number of occurrences of each element in the

sequence and the order in which the elements appear in the sequence). There is
another operator (items) that determines the number of occurrences of each ele-

ment in the sequence. The operator items generates a bag of elements from the

sequence:

items : Σ*→ (Σ→ 1).

The concatenation of two sequences is defined formally as:

 -∩-: Σ* x Σ*→ Σ*

Λ ∩ σ= σ
 (x : σ) ∩ τ = x : (σ ∩ τ)

The jth element in a sequence σ is given by σ[i] where 1≤ i ≤ len(σ). The rever-

sal of a sequence σ is given by rev σ.

 120 Mathematical Approaches to Software Quality

6.7 Indexed Structures

An indexed monoid (X →M’, ,)7 is created from an underlying base monoid

(M, *, u) and an index set X. It is defined as follows:

: (X →M’) x (X →M’) → (X →M’)

μ μ

μ ({x m}|_|) (μ |_| {x m}) x ∉ μ

 (μ † {x μ (x)*m}) x ∈ μ ∧ μ (x)*m ≠u

 μ x ∈ μ ∧ μ (x)*m = u

Indexing generates a higher monoid from the underlying base monoid, and this

allows a chain (tower) of monoids to be built, with each new monoid built from

the one directly underneath it in the chain. The power of the indexed monoid
theorem is that it allows new structures to be built from existing structures, and

the indexed structures inherit the properties of the underlying base structure.

A simple example of an indexed structure is a bag of elements from the
set X. The indexed monoid is (X → 1, ⊕,), and the underlying base monoid is
(, +, 0). Other indexed structures have also been considered in the Irish school
of VDM.

6.8 Specifications and Proofs

Consider the specification of a simple dictionary in [But:00] where a dictionary

is considered to be a set of words, and the dictionary is initially empty. There is

an operation to insert a word into the dictionary, an operation to lookup a word

in the dictionary, and an operation to delete a word from the dictionary.

w ∈Word

 : Dict = Word

0 : Dict

0 ∅

The invariant is a condition (predicate expression) that is always true of the

specification. The operations are required to preserve the invariant whenever the

preconditions for the operations are true, and the initial system is required to

satisfy the invariant. This gives rise to various proof obligations for the system.

7 Recall M’ = [u] M

 6. Irish School of VDM 121

 The simple dictionary above is too simple for an invariant, but in order

to illustrate the concepts involved, an artificial invariant that stipulates that all

words in the dictionary are British English is considered part of the system.

isBritEng : Word → B

inv-Dict : Dict → B

inv-Dict ∀ [isBritEng]

The signature of ∀ is (X → B) → X → B, and it is being used slightly differ-

ently from the predicate calculus. There is a proof obligation to show that the

initial state of the dictionary (i.e., 0) satisfies the invariant. That is, it is required

to show that inv-Dict 0 = TRUE. However, this is clearly true since the diction-

ary is empty in the initial state.

The first operation considered is the operation to insert a word into the

dictionary. The precondition to the operation is that the word is not currently in

the dictionary and that the word is British English.

Ins : Word → Dict → Dict

Ins [w] ∪ {w}

pre-Ins : Word → Dict → B

pre-Ins [w] isBritEng (w) ∧ w ∉

There is a proof obligation associated with the Ins operation. It states that if the

invariant is true, and the precondition for the Ins operation is true, then the in-

variant is true following the Ins operation.

inv-Dict ∧ pre-Ins [w] inv-Dict (Ins [w])

COMMENT

One key difference between the Irish school of VDM and other methods such as

standard VDM or Z is that postconditions are not employed in VDM♣. Instead,

the operation is explicitly constructed.

THEOREM

inv-Dict ∧ pre-Ins [w] inv-Dict (Ins [w])

PROOF

inv-Dict ∧ pre-Ins [w]
∀ [isBritEng] ∧ isBritEng (w) ∧ w ∉

 (∀ wd ∈ isBritEng (wd)) ∧ isBritEng (w) ∧ w ∉
 (∀ wd ∈ ∪ {w} isBritEng (wd))

∀ [isBritEng] (∪ {w})
inv-Dict (Ins [w])

 122 Mathematical Approaches to Software Quality

The next operation considered is a word lookup operation, and this operation

returns true if the word is present in the dictionary and false otherwise. It is

given by:

Lkp : Word → Dict → B

Lkp [w] [w]

The final operation considered is a word removal operation. This operation re-

moves a particular word from the dictionary and is given by:

Rem : Word → Dict → Dict

Rem [w] [w] 8

There is a proof obligation associated with the Rem operation. It states that if the

invariant is true, and the precondition for the Rem operation is true, then the

invariant is true following the Rem operation.

 inv-Dict ∧ pre-Rem [w] inv-Dict (Rem [w])

6.9 Refinement

A specification in the Irish school of VDM involves defining the state of the

system and then specifying various operations. The formal specification is im-
plemented by a programmer, and mathematical proof is employed to provide

confidence that the program meets its specification. VDM♣ employs many con-
structs that are not part of conventional programming languages, and hence,

there is a need to write an intermediate specification that is between the original

specification and the eventual program code. The intermediate specification
needs to be correct with respect to the specification, and the program needs to be

correct with respect to the intermediate specification. This requires mathematical
proof.

The representation of an abstract data type like a set by a sequence is

termed data reification, and data reification is concerned with the process of
transforming an abstract data type into a concrete data type. The abstract and

concrete data types are related by the retrieve function, and the retrieve function

maps the concrete data type to the abstract data type. There are typically several
possible concrete data types for a particular abstract data type (refinement is a

relation), whereas there is one abstract data type for a concrete data type (i.e.,

retrieval is a function). For example, sets are often reified to unique sequences;

8 Notation is often abused and this should strictly be written as [{w}] .

 6. Irish School of VDM 123

however, more than one unique sequence can represent a set, whereas a unique

sequence represents exactly one set.
The operations defined on the concrete data type need to be related to

the operations defined on the abstract data type. The commuting diagram prop-
erty is required to hold; i.e., for an operation on the concrete data type to cor-
rectly model the operation on the abstract data type the following diagram
must commute, and the commuting diagram property requires proof.

Fig. 6.4. Commuting Diagram Property

That is, it is required to prove that:

ret (σ τ) = (ret σ) (ret τ).

It needs to be proved that the initial states correspond to one another,

and that each operation in the concrete state is correct with respect to the opera-

tion in the abstract state, and also that it is applicable (i.e., whenever the abstract
operation may be performed the concrete operation may also be performed).

The process of refinement of the dictionary from a set to a sequence of
words is considered. This involves defining the concrete state and the operations

on the state, and proving that the refinement is valid. The retrieve function de-

rives the abstract state from the concrete state, and is given by the elems opera-
tor for the set to sequence refinement of the dictionary. The following is adapted

from [But:00]:

σ ∈ DSeq = Word*

σ0 : Dseq

σ0 Λ

inv-Dseq ∀ [isBritEng] σ

retr-Dict : DSeq→ Dict

retr-Dict elems

Here, ∀ has signature (X → B) → X* → B.

retr(σ),

retr(τ)
retr

(σ τ)

 (σ τ)

retr(σ) retr(τ)

 124 Mathematical Approaches to Software Quality

The first operation considered on the concrete state is the operation to insert a

word into the dictionary.

Ins1 : Word → DSeq → DSeq

Ins1 [w] w :

pre-Ins1 : Word → DSeq → B

pre-Ins1 [w] isBritEng (w) ∧ w ∉ elems ()

There is a proof obligation associated with the Ins1 operation.

inv-DSeq ∧ pre-Ins1 [w] inv-DSeq(Ins1 [w])

The proof is similar to that considered earlier on the abstract state. Next, we

show that Ins1 is a valid refinement of Ins. This requires that the commuting
diagram property holds:

pre-Ins1 [w] retr-Dict(Ins1 [w]) = Ins [w] (retr-Dict)

Fig. 6.5. Commuting Diagram for Dictionary Refinement

PROOF

pre-Ins1 [w]
 isBritEng (w) ∧ w ∉ elems ()

retr-Dict(Ins1 [w])

= retr-Dict (w :)
= elems (w :)

= {w} ∪ elems ()

= {w} ∪ retr-Dict ()

= Ins [w] (retr-Dict)

There are other operations for the concrete representation of the dictionary and

these are discussed in [But:00].

retr-Dict retr-Dict

(Ins1 [w])

Ins1 [w]

Ins [w] (retr-Dict)

 6. Irish School of VDM 125

6.10 Summary

The Irish School of VDM is a variant of standard VDM, and is characterized by

its constructive approach, classical mathematical style, and its terse notation.
The method combines the what and how of formal methods in that its terse

specification style stipulates in concise form what the system should do; and

furthermore the fact that its specifications are constructive (or functional) means
that that the how is included with the what.

VDM♣ follows a similar development methodology as in standard
VDM and is a model-oriented approach. The initial specification is presented,

with initial state and operations defined. The operations are presented with pre-
conditions; and the operation is functionally constructed. Each operation has an

associated proof obligation; if the precondition for the operation is true and the

operation is performed, then the system invariant remains true after the opera-
tion.

The school has been influenced by the work of Polya and Lakatos.

Polya has recommended problem solving by first tackling easier subproblems,
whereas Lakatos adopted a heuristic approach to mathematical discovery based

on proposing theorems and discovering hidden lemmas.

There is a rich operator calculus in the Irish school of VDM, and new
operators and structures that are useful for specification and proof are sought. A

special emphasis is placed on the identification of useful structures and their

morphisms that provide compact specifications and proof.
Partial functions are employed, and care is taken to ensure that the

function is defined and will terminate prior to function application. The logic of

partial functions (LPFs) is avoided and care is taken to ensure that the recursive

argument is strictly decreasing in each recursive invocation. The ⊥ symbol is
typically used in the Irish school to represent undefined or unavailable or do not

care. Academic and industrial projects have been conducted using VDM♣, but at
this stage tool support is limited.

The formal methods group at Trinity College, Dublin

(www.cs.tcd.ie/fmg) is active in promoting the philosophy and method of the

Irish school of VDM. Further information on VDM♣ is available in [Mac:90,

But:99].

7

Dijkstra and Hoare

7.1 Introduction

Edsger W. Dijkstra and C. A. R. Hoare are two famous names in computer sci-

ence, and both have received numerous awards for their contribution to the dis-

cipline. Their work has provided a scientific basis for computer software.1

Dijkstra was born in Rotterdam in Holland and studied mathematics and physics

at the University of Leyden. He obtained a PhD in computer science from the

University of Amsterdam in 1959. He decided not to become a theoretical
physicist, as he believed that programming offered a greater intellectual chal-

lenge than theoretical physics.
He commenced his programming career at the Mathematics Centre in

Amsterdam in the early 1950s, and discovered the shortest path algorithm in the

mid-1950s. He contributed to the definition of Algol 60, and it became a stan-
dard in 1962. Dijkstra then designed and coded the first Algol 60 compiler. He

became a professor of mathematics at Eindhoven University, Holland, in the

early 1960s, and became a Burroughs research fellow in 1973. He received the
Turing award in 1972 and took a position at the University of Texas in Austin in

1984. He died of cancer in 2002.

Dijkstra made many contributions to computer science, including con-
tributions to language development, operating systems, formal program devel-

opment, and to the vocabulary of computer science. Some of his achievements

are summarized in the table below:

Area Description

Go to statement Dijkstra argued against the use of

the go to statement in program-
ming. This eventually led to the

abolition of its use in programming

languages.

1 However, it remains to be seen if the theoretical foundations developed by Dijkstra and Hoare can

be made usable to practitioners in mainstream software engineering.

 7. Dijkstra and Hoare 127

Graph algorithms Dijkstra developed various efficient

graph algorithms to determine the
shortest or longest paths from a

vertex u to vertex v in a graph.

Operating systems Dijkstra discovered that operating

systems can be built as synchro-
nized sequential processes. He in-

troduced ideas such as semaphores

and deadly embrace.

Algol 60 Dijkstra contributed to the defini-
tion of the language and designed

and coded the first Algol 60 com-
piler.

Formal program devel-

opment

(Guarded commands and

predicate transformers)

Dijkstra introduced guarded com-

mands and predicate transformers

as a means of defining the seman-

tics of a programming language. He

showed how weakest preconditions

can be used as a calculus (wp-

calculus) to develop reliable pro-

mathematical proof techniques to

programming, and his approach

involved the development of pro-

grams from mathematical axioms.
 Table 7.1. Dijkstra’s Achievements.

The approach to building high-quality software in the 1960s was to try

out the program on test cases until they were debugged. John McCarthy argued

at the IFIP congress in 1962 that the focus should instead be to prove that the
programs have the desired properties rather than testing the program ad

nauseum. The NATO conference on software engineering in 1968 highlighted

the extent of the problems that existed with software, and the term software cri-
sis was coined to describe this. The problems included cost and schedule over-

runs and problems with software reliability.
Dijkstra advocated simplicity, precision, and mathematical integrity in

his formal approach to program development using the weakest precondition

calculus. He insisted that programs should be composed correctly using mathe-
matical techniques, and not debugged into correctness. He considered testing to

be an inappropriate means of building quality into software, and his statement

on software testing is well known:

grams. This led to a science of

programming using mathematical

logic as a methodology for formal

program construction. He applied

 Testing a program shows that it contains errors never that it is correct.2

 128 Mathematical Approaches to Software Quality

Dijkstra corresponded with other academics through an informal distri-

bution network known as the EWD series. These contain his various personal
papers including trip reports and technical papers.

Charles Anthony Richard (Tony) Hoare studied philosophy (including

Latin and Greek) at Oxford University. He studied Russian at the Royal Navy
during his National Service in the late 1950s. He then studied statistics and went

to Moscow University as a graduate student to study machine translation of lan-

guages and probability theory. He discovered the well-known sorting algorithm
Quicksort while investigating efficient ways to look up words in a dictionary.

He returned to England in 1960 and worked as a programmer for Elliot Brothers

(a company that manufactured scientific computers). He led a team to produce
the first commercial compiler for Algol 60 and the project was very successful.

He then led a team to implement an operating system, and the project was a dis-

aster. He managed a recovery from the disaster and then moved to the research
division of the company. He took a position at Queens University in Belfast,

Ireland, in 1968, and his research goals included examining techniques to assist

with the implementation of operating systems, especially to see if advances in
programming methodologies could assist with the problems of concurrency. He

also published material on the use of assertions to prove program correctness.

He moved to Oxford University in 1977 following the death of Christopher
Strachey (well known for his work in denotational semantics), and built up the

programming research group. This group has produced the Z specification lan-
guage and CSP. He received the Turing Award in 1980. Following his retire-

ment from Oxford he took up a position as senior researcher at Microsoft

Research in the United Kingdom.
Hoare has made many contributions to computer science, and these in-

clude the Quicksort algorithm, the axiomatic approach to program semantics,

and programming constructs for concurrency. These are summarized in the table
below:

Area Description

Quicksort Quicksort is a highly efficient sorting
algorithm and is used often by pro-

grammers.

Axiomatic semantics Hoare defined a small programming

language in terms of axioms and logi-
cal inference rules. He then showed

how this could be applied to prove

partial correctness of programs.

2 I see software testing as an essential part of the software process, and various types of testing are

described in [ORg:02]. Modern software testing is quite rigorous and can provide a high degree of

confidence that the software is fit for use. It cannot, of course, build quality in; rather, it can give

confidence that quality has been built in. The analysis of the defects identified during testing may be

useful in improving the software development process.

 7. Dijkstra and Hoare 129

Communicating se-

quential processes
(CSP)

CSP is a mathematical approach to

the study of communication and con-
currency. It is applicable to the speci-

fication and design of computer

systems that continuously interact
with their environment.

 Table 7.2. Hoare’s Achievements.

Hoare was responsible for producing the first commercial compiler for Algol 60
during his period working at Elliot Brothers. He later remarked later:

Algol 60 was a great achievement in that it was a significant advance over most

of its successors.

Hoare has made fundamental contributions to programming languages

and his ACM lecture on the “Emperors Old Clothes”3 is well known. He stresses

the importance of communicating ideas (as well as having ideas), and enjoys

writing (and rewriting). A paper by Hoare may include eight or nine rewrites4

before publication.

7.2 Calculus of Weakest Preconditions

The weakest precondition calculus was developed by Dijkstra [Dij:76] and has
been applied to the formal development of programs. The material presented

here is based on [Gri:81], and a programming notation is introduced and defined

in terms of the weakest precondition. The weakest precondition wp(S,R) is a
predicate that describes a set of states. It is a function with two arguments (a

command and a predicate that describes the desired result after the execution of
the command). It is defined as follows:

DEFINITION (WEAKEST PRECONDITION)

The predicate wp(S,R) represents the set of all states such that, if execution of S

commences in any one of them, then it is guaranteed to terminate in a state satis-

fying R.

3 Hoare argues for simplicity in language design and in software design and argues against lan-

guages such as Algol 68 and ADA which attempted to be all things to all people. There is a well-

known quote in which he states “There are two ways of constructing a software design. One way is

to make it so simple that there are obviously no deficiencies, and the other way is to make it so com-

plex that there are no obvious deficiencies.”

4 Parnas has also noted the importance of rewriting and states that one of the people who influenced

him in his early years stressed the importance of using waste paper baskets to dispose of the current

draft paper and start again.

 130 Mathematical Approaches to Software Quality

wp(i := i+5; i ≤ 3) = (i ≤ -2).

The weakest precondition wp(S,T) represents the set of all states such that if

execution of S commences in any one of them, then it is guaranteed to terminate:

wp(i := i+5; T) = T.

The weakest precondition wp(S,R) is a precondition of S with respect to
R and it is also the weakest such precondition. Given another precondition P of

S with respect to R, then P wp(S,R).
For a fixed command S then wp(S,R) can be written as a function of

one argument wpS(R), and the function wpS transforms the predicate R to an-
other predicate wpS(R); i.e., the function wpS acts as a predicate transformer.

An imperative program may be regarded as a predicate transformer.

This is since a predicate P characterizes the set of states in which the predicate P
is true, and an imperative program may be regarded as a binary relation on

states, which may be extended to a function F, leading to the Hoare triple

P{F}Q. That is, the program F acts as a predicate transformer. The predicate P
may be regarded as an input assertion, i.e., a Boolean expression which must be

true before the program F is executed. The Boolean expression Q is the output

assertion, and is true if the program F terminates, having commenced in a state
satisfying P.

Properties of WP

The weakest precondition wp(S,R) has several well-behaved properties such as:

• Law of the excluded miracle

wp(S, F) = F

This describes the set of states such that if execution commences in one

of them, then it is guaranteed to terminate in a state satisfying false.
However, no state ever satisfies false, and therefore wp(S, F) = F. The

name of this law derives from the fact that it would be a miracle if exe-

cution could terminate in no state.

• Distributivity of Conjunction

wp(S, Q) ∧ wp(S, R) = wp(S, Q∧R)

This property stipulates that the set of states such that if execution

commences in one of them, then it is guaranteed to terminate in a state

satisfying Q∧R is precisely the set of states such that if execution
commences in one of them then execution terminates with both Q and

R satisfied.

Let S be the assignment command i := i+5 and let R be i ≤ 3 then

 7. Dijkstra and Hoare 131

• Law of Monotonicity

Q R then wp(S, Q) wp(S, R)

This property states that if a postcondition Q is stronger than a post-

condition R, then the weakest precondition of S with respect to Q is
stronger than the weakest precondition of S with respect to R.

• Distributivity of Disjunction

wp(S, Q) ∨ wp(S, R) wp(S, Q ∨ R)

This property states that the set of states corresponding to the weakest
precondition of S with respect to Q or the set of states corresponding to

the weakest precondition of S with respect to R is stronger than the

weakest precondition of S with respect to Q ∨ R. Equality holds for dis-
tributivity of disjunction only when the execution of the command is
deterministic.

WP of Commands

The weakest precondition can be used to provide the definition of commands in

a programming language. The commands considered here are as in [Gri:81].

• Skip Command

wp(skip, R) = R

The skip command does nothing and is used to explicitly say that noth-
ing should be done. The predicate transformer wpskip is the identity

function.

• Abort Command

wp(abort, R) = F

The abort command is executed in a state satisfying false (i.e., no
state). This command should never be executed. If program execution

reaches a point where abort is to be executed then the program is in er-

ror and abortion is called for.

• Sequential Composition

wp(S1;S2, R) = wp(S1, wp(S2,R))

The sequential composition command composes two commands S1 and
S2 by first executing S1 and then executing S2. Sequential composition is

expressed by S1;S2. Sequential composition is associative:

wp(S1;(S2; S3),R) = wp((S1;S2); S3, R).

 132 Mathematical Approaches to Software Quality

• Simple Assignment Command

wp(x := e, R) = dom(e) cand Rx
e

The execution of the assignment command consists of evaluating the

value of the expression e and storing its value in the variable x. How-

ever, the command may be executed only in a state where e may be
evaluated. The expression Rx

e denotes the expression obtained by sub-

stituting e for all free occurrences of x in R. For example:

(x + y > 2)x
v = v + y > 2.

The cand operator is used to deal with undefined values and was dis-
cussed in Chapter 3. It is a noncommutative operator and its truth table

is defined in [Gri:81]. The expression a cand b is equivalent to:

a cand b ≅ if a then b else F.

The explanation of the definition of the weakest precondition of the as-

signment statement wp(x := e, R) is that R will be true after execution if
and only if the predicate R with the value of be true x replaced by e is

true before execution (since x will contain the value of e after execu-

tion). Often, the domain predicate dom(e) that describes the set of states
that e may be evaluated in is omitted as assignments are usually written

in a context in which the expressions are defined:

wp(x := e, R) = Rx
e.

The simple assignment can be extended to a multiple assignment to
simple variables. The assignment is of the form x1,x2,…,xn := e1,e2,...,en

and is described in [Gri:81].

• Assignment to Array Element Command

wp(b[i] := e, R) = inrange(b,i) cand dom(e) cand Rb
(b;i:e)

The execution of the assignment to an array element command consists
of evaluating the expression e and storing its value in the array element

subscripted by i. The inrange(b,i) and dom(e) are usually omitted in

practice as assignments are usually written in a context in which the
expressions are defined and the subscripts are in range. Therefore, the

weakest precondition is given by:

wp(b[i] := e, R) = Rb
(b;i:e)

The notation (b;i:e) denotes an array identical to array b except that the
array element subscripted by i contains the value e. The explanation of

the definition of the weakest precondition of the assignment statement

 7. Dijkstra and Hoare 133

to an array element (wp(b[i] := e, R) is that R will be true after execu-

tion if and only if the value of b replaced by (b;i:e) is true before exe-
cution (since b will become (b;i:e) after execution).

• Alternate Command

wp(IF, R) = dom(B1∨ B2 ∨ … ∨ Bn) ∧ (B1∨ B2 ∨ …. ∨ Bn)

 ∧ (B1 wp(S1, R)) ∧ (B2 wp(S2, R)) ∧… ∧ (Bn wp(Sn, R))

The alternate command is the familiar if statement of programming
languages. The general form of the alternate command is:

 If B1 → S1

 B2 → S2
 …

 Bn → Sn

 fi

Each Bi →Si is a guarded command (Si is any command). The guards
must be well defined in the state where execution begins, and at least

one of the guards must be true or execution aborts. If at least one guard

is true, then one guarded command Bi →Si with true guard Bi is chosen
and Si is executed. For example, in the if statement below, the state-
ment z:= x+1 is executed if x > 2, and the statement z:= x+2 is executed

if x < 2. For x =2 either (but not both) statements are executed. This is

an example of non-determinism.

 if x 2 → z := x+1

 x 2 → z := x+2

 fi

• Iterative Command
The iterate command is the familiar while loop statement of program-
ming languages. The general form of the iterate command is:

 do B1 → S1

 B2 → S2
 …

 Bn → Sn

od

The meaning of the iterate command is that a guard Bi is chosen that is

true and the corresponding command Si is executed. The process is re-

peated until there are no more true guards. Each choice of a guard and
execution of the corresponding statement is an iteration of the loop. On

termination of the iteration command all of the guards are false. The
meaning of the DO command wp(DO, R) is the set of states in which

 134 Mathematical Approaches to Software Quality

execution of DO terminates in a bounded number of iterations with R

true.

wp(DO, R) = (∃k : 0 k : Hk(R))

where Hk(R) is defined as:

Hk(R) = H0(R) ∨ wp(IF, Hk-1(R))

A more detailed explanation of loops is in [Gri:81]. The definition of procedure

call may also be given in weakest preconditions.

Formal Program Development with WP

The use of weakest preconditions for formal program development is described
in [Gri:81]. The approach is a radical departure from current software engineer-

ing and involves formal proofs of correctness.5 A program P is correct with re-
spect to a precondition Q and a postcondition R if {Q}P{R}. The idea is that the

program and its proof should be developed together. The proof involves weakest

preconditions and uses the formal definition of the programming constructs
(e.g., assignment and iteration) discussed earlier.

 Programming is viewed as a goal-oriented activity in that the desired

result (i.e., the postcondition R) plays a more important role in the development
of the program than the precondition Q. Programming is employed to solve a

problem, and the problem needs to be clearly stated with precise pre- and post-

conditions.

 The example of a program6 P to determine the maximum of two inte-

gers x and y is discussed in [Gri:81]. A program P is required that satisfies:

 {T}P{R: z = max(x,y)}

The postcondition R is then refined by replacing max with its definition:

 {R: z ≥x ∧ z ≥y ∧ (z = x ∨ z = y).}

The next step is to identify a command that could be executed in order to estab-

lish the postcondition R. One possibility is z := x and the conditions under which

this assignment establishes R is given by:

 wp(“z := x”, R) = x ≥x ∧ x ≥ y ∧ (x = x ∨ x = y)

5 I consider Dijkstra’s weakest preconditions to be a nice elegant theoretical approach that has lim-

ited direct application to mainstream software engineering. I find the approach slightly cumbersome

but this may be due to my own failings.

6 I see this as a toy example and note that the formal methods community is extremely good at pro-

ducing toy examples. However, what is required is the development of a suite of practical industrial

examples to demonstrate the usefulness and applicability of the various theoretical approaches.

 = x ≥y

 7. Dijkstra and Hoare 135

Another possibility is z := y and the conditions under which this assignment es-
tablishes R is given by:

 wp(“z := y”, R) = y ≥x

The desired program is then given by:

if x ≥y → z := x

 y ≥x → z := y

fi

There are many more examples of formal program development in
[Gri:81]. The next section considers early work done by C. A. R Hoare on the

axiomatic semantics of programming languages. The axiomatic semantics of
programming languages give a precise meaning to the various constructs in the

language.

7.3 Axiomatic Definition of Programming Languages

An assertion is a property of the program’s objects: e.g., the assertion (x – y > 5)

is an assertion that may or may not be satisfied by a state of the program during
execution. An assertion is essentially a Boolean expression. For example, a state

in which the values of the variables x and y are 7 and 1 respectively satisfies the
assertion; whereas a state in which x and y have values 4 and 2 respectively does

not.

The first article on program proving using techniques based on asser-
tions was by Floyd in 1967 [Fly:67]. The paper was concerned with assigning

meaning to programs and also introduced the idea of a loop invariant. Floyd’s

approach was based on programs expressed by flowcharts, and an assertion was
attached to the edge of the flowchart. The meaning was that the assertion would

be true during execution of the corresponding program whenever execution

reached that edge. For a loop, Floyd placed an assertion P on a fixed position of
the cycle and proved that if execution commenced at the fixed position with P

true then and reached the fixed position again, then P would still be true.

he proposed a logical system for proving properties of program fragments. The

well-formed formulae of the logical system are of the form:

P {a}Q

where P is the precondition; a is the program fragment; and Q is the postcondi-
tion. The precondition P is a predicate (or input assertion), and the postcondition

R is a predicate (output assertion). The braces separate the assertions from the

Hoare refined and improved upon Floyd’s work in 1969 [Hor:69], and

 136 Mathematical Approaches to Software Quality

program fragment. The well-formed formula P {a}Q is itself a predicate that is

either true or false. This notation expresses the partial correctness of a with re-
spect to P and Q where partial correctness and total correctness are defined as

follows:

DEFINITION (PARTIAL CORRECTNESS)

A program fragment a is partially correct for precondition P and postcondition

Q if and only if whenever a is executed in any state in which P is satisfied and
this execution terminates, then the resulting state satisfies Q.

The proof of partial correctness requires proof that the postcondition Q
is satisfied if the program terminates. Partial correctness is a useless property

unless termination is proved, as any nonterminating program is partially correct
with respect to any specification.

DEFINITION (TOTAL CORRECTNESS)

A program fragment a is totally correct for precondition P and postcondition Q

if and only if whenever a is executed in any state in which P is satisfied the exe-

cution terminates and the resulting state satisfies Q.

The proof of total correctness requires proof that the postcondition Q is satisfied

and that the program terminates. Total correctness is expressed by {P} a {Q}.
The calculus of weakest preconditions developed by Dijkstra discussed in the

previous section is based on total correctness, whereas Hoare’s approach is

based on partial correctness.

Hoare’s axiomatic theory of programming languages consists of axioms and

rules of inference to derive certain pre-post formulae. The meaning of several
constructs in programming languages is presented here in terms of pre-post se-

mantics.

• Skip

The meaning of the skip command is:

P {skip} P.

The skip command does nothing and this instruction guarantees that

whatever condition is true on entry to the command is true on exit from
the command.

• Assignment

The meaning of the assignment statement is given by the axiom:

Px
e {x:=e}P.

 7. Dijkstra and Hoare 137

The notation P x
e has been discussed previously and denotes the expres-

sion obtained by substituting e for all free occurrences of x in P.The
meaning of the assignment statement is that P will be true after execu-

tion if and only if the predicate P x
e with the value of x replaced by e in

P is true before execution (since x will contain the value of e after exe-
cution).

• Compound

The meaning of the conditional command is:

P {S1}Q, Q {S2}R

 P {S1 ; S2 }R

The execution of the compound statement involves the execution of S1

followed by S2. The correctness of the compound statement with re-
spect to P and R is established by proving that the correctness of S1

with respect to P and Q and the correctness of S2 with respect to Q and

R.

• Conditional

The meaning of the conditional command is:

P∧B {S1}Q, P∧¬B {S2}Q

 P{if B then S1 else S2}Q

The execution of the if statement involves the execution of S1 or S2. The
execution of S1 takes place only when B is true, and the execution of S2

takes place only when ¬B is true. The correctness of the if statement
with respect to P and Q is established by proving that S1 and S2 are cor-

rect with respect to P and Q.

However, S1 is executed only when B is true, and therefore it is re-

quired to prove the correctness of S1 with respect to P∧B and Q, and

the correctness of S2 with respect to P∧¬B and Q.

• While Loop

The meaning of the while loop is given by:

P∧B {S} P

 P {while B do S} P∧¬B

The property P is termed the loop invariant as it remains true through-

out the execution of the loop. The invariant is satisfied before the loop
begins and each iteration of the loop preserves the invariant.

 138 Mathematical Approaches to Software Quality

The execution of the while loop is such that if the truth of P is main-

tained by one execution of S, then it is maintained by any number of
executions of S. The execution of S takes place only when B is true,

and upon termination of the loop P ∧ ¬B is true.

Loops may fail to terminate and there is therefore a need to prove ter-
mination. The loop invariant needs to be determined for formal pro-

gram development.

7.4 Communicating Sequential Processes

The objectives of the process calculi [Hor:85] are to provide mathematical mod-
els which provide insight into the diverse issues involved in the specification,

design, and implementation of computer systems which continuously act and

interact with their environment. These systems may be decomposed into sub-
systems which interact with each other and their environment. The basic build-

ing block is the process, which is a mathematical abstraction of the interactions

between a system and its environment.
A process which lasts indefinitely may be specified recursively. Proc-

esses may be assembled into systems, execute concurrently, or communicate

with each other. Process communication may be synchronized, and generally
takes the form of a process outputting a message simultaneously to another

process inputting a message. Resources may be shared among several processes.

Process calculi enrich the understanding of communication and concurrency,
and an elegant formalism such as CSP [Hor:85] obeys a rich collection of

mathematical laws.

 The expression (a P) in CSP describes a process which first engages
in event a, and then behaves as process P. For example, a vending machine (as

adapted from [Hor:85]) that serves one customer before breaking is given by:

(coin (choc STOP)).

A recursive definition is written as (μX):A•F(X), where A is the alpha-

bet of the process. The behavior of a simple chocolate vending machine is given
by the following recursive definition:

 VMS = μX:{coin, choc}.(coin (choc X)).

The simple vending machine has an alphabet of two symbols, namely, coin and

choc, and the behavior of the machine is such that when a coin is entered into
the machine, a chocolate is then provided. This machine repeatedly serves

chocolate in response to a coin.
 It is reasonable to expect the behavior of a process to be influenced by

interaction with its environment. A vending machine may also provide tea and

coffee as well as chocolate, and it is the customer’s choice as to which product is

 7. Dijkstra and Hoare 139

selected at the machine. The choice operation is used to express the choice of

two distinct events x and y. The subsequent behavior is described by P if the first
event was x, and otherwise Q:

 (x P | y Q)

The following machine serves either chocolate or tea on each transaction:

 VM = μX:(coin (choc X | tea X)).

The definition of choice can be extended to more than two alternatives:

(x P | y Q |... | z R).

The recursive definition above allows the definition of a single process as the

solution of a single equation. This may be generalized to mutual recursion in-
volving the solution of sets of simultaneous equations in more than one un-

known.

No. Property Description

1. (x P | y Q) = (y Q | x P) Choice operator is commu-

tative.

2. (x P) ≠ STOP A process that can do some-

thing is not the same as one
that does nothing.

3. (x P) = (y Q) x = y ∧ P = Q Equality.

4. (x:A P(x))=(y:B Q(y)) (A =

B ∧∀x∈A• P(x) = Q(x))

General choice equality

5. F(X) a guarded expression then

(Y=F(Y) (Y=μX.F(X))

Every properly guarded

recursive equation has only
one solution.

6. μX.F(X) = F(μX.F(X)) μX.F(X) is the solution.
 Table 7.3. Properties of Processes

The behavior of a process can be recorded as a trace of the sequences

of actions that it has engaged. This allows a process to be specified prior to im-
plementation by describing the properties of its traces. A trace of the behavior of

a process is a finite sequence of symbols recording the events that the process

has engaged up to a particular time instance. Suppose events x,y, and z have oc-
curred. Then this is represented by the trace:

x,y,z

Initially, the process will have engaged in no events and this is represented by
the empty trace:

 140 Mathematical Approaches to Software Quality

There are various operations on traces such as concatenation, restriction
of a trace to elements of a set, the head and tail of a trace, the star operator, and

the interleaving of two traces. The concatenation of two traces s and t is denoted
by s ∧ t. For example, the concatenation of x,y and z is given by x,y,z . The
restriction operator is employed on traces to restrict the symbols in the trace t to
elements of a particular set A. It is denoted by t A and the restriction of x,z,x
to {x} is given by x,z,x {x} = x,x . The head and tail of a trace s is given by

s0 and s’ respectively. The set A* is the set of all finite traces formed from the set
A. The length of a trace t is given by #t. A sequence s is an interleaving of two

sequences u and t if s consists of all the elements of u and t and can be split into

two subsequences to yield u and t. The mathematical definition of interleaving is
recursive and given in [Hor:85].

A trace of a process records the behavior of the process up to a specific

time instance. The particular trace that will be recorded is not known in advance
as it depends on how the process interacts with its environment. However, the

complete set of all possible traces of a process P can be determined in advance

and is given by traces(P). There are various properties of the traces function:

No. Property Description

1. traces(STOP) ={ } There is only one trace of

the STOP process namely
the empty trace.

2. traces(x P) = { }∪{ x ∧ t }| t

∈ traces(P)}

A trace of (x P) is either

empty or begins with x such
that its tail is a possible trace

of P.

3. traces(x P | y Q) = {t | t =

∨ (t0 = x ∧ t’ ∈ traces(P)) ∨ (t0 = y

∧ t’ ∈ traces(Q))}

A trace of a process that

offers a choice is a trace of
one of the alternatives.

4. traces(μX:A.F(X)) = n≥0

traces(Fn(STOPA))

Fn (X) =F(F n-1(X)) and F 0

(X) = X

 Table 7.4. Properties of Traces.

The definition of the intended behavior of the process is termed its

specification, and the implementation of a process can be proved to meet its

specification (i.e., P sat S). Processes can be assembled together to form sys-
tems, and the processes interact with each other and their environment. The en-

vironment may also be described as a process, and the complete system is

regarded as a process with its behavior defined in terms of the component proc-
esses.

The interaction between two processes may be regarded as events that

require the simultaneous participation of both the processes. The interaction
between two processes with the same event alphabet is denoted by:

 P Q.

 7. Dijkstra and Hoare 141

The interaction operator is well behaved and satisfies the following properties :

No. Property Description

1. P Q = Q P Commutative

2. (P Q) R = P (Q R) Associative

3. P STOP = STOP Deadlock

4. (x P) (x Q) = (x (P Q)) Engagement

5. (x P) (y Q) = STOP (x y) Deadlock

6. (x:A P(x)) (y:B Q(y)) =

(z:A∩B (P(z) Q(z)))

Only events they both offer
will be possible

Table 7.5. Properties of Interaction Operator

The operator can be generalized to the case where the operands P and

Q have different alphabets. When such processes are run concurrently, then
events that are in both alphabets require the simultaneous participation of P and

Q, whereas events that are in the alphabet of P but not in Q are of no concern to

Q, and vice versa for events that are in the alphabet of Q but not in the alphabet
of P. This is described in detail in [Hoa:85].

There are some tools available for CSP and these include FDR and

ProBE from Formal Systems Europe in the United Kingdom. FDR has been
employed to an extent in industry to check for safety and liveness properties

such as deadlock and livelock. ProBE is an animator tool for CSP.

7.5 Summary

Edsger W. Dijkstra and C. A. R. Hoare have both made major contributions to
computer science, and their work has provided a scientific basis for computer

software. Dijkstra was born in Rotterdam, Holland and studied at the University

of Leyden, and later obtained his PhD from the University of Amsterdam. He
worked at the Mathematics Centre in Amsterdam and later in Eindhoven in the

Netherlands. He later worked in Austin in the U.S. His many contributions to

computer science include shortest path algorithms, Operating systems, Algol 60
and formal system development (using the weakest precondition calculus).

Hoare studied philosophy at Oxford in the United Kingdom, and took a

position in computing with Elliot Brothers in the early 1960s. He discovered the
Quicksort algorithm while studying machine translation at Moscow University.

He moved to Queens University in Belfast in 1968 and dedicated himself to

providing a scientific basis to programming. He moved to Oxford University in
1977 and following his retirement from Oxford he took a position with Micro-

soft Research in the U.K. His many contributions to computer science include
Quicksort, Axiomatic Definition of Programming Languages and Communicat-

ing Sequential Processes. Quicksort is a highly efficient sorting algorithm. The

axiomatic definition of programming languages provides a logical system for

 142 Mathematical Approaches to Software Quality

proving properties of program fragments CSP provides a mathematical model

that provide insight into the issues involved in the specification, design, and
implementation of computer systems which continuously act and interact with

their environment.

8

The Parnas Way

8.1 Introduction

David L. Parnas has been influential in the computing field and his ideas on the

specification, design, implementation, maintenance and documentation of com-
puter software are still relevant today. He has won numerous awards (including

ACM best paper award in 1979; two most influential paper awards from ICSE in

1978 and 1984; the ACM SigSoft outstanding researcher award in 1998; and an
honorary doctorate from the ETH in Zurich and the Catholic University of Lou-

vain in Belgium) for his contribution to computer science. Software engineers

today continue to use his ideas in their work.1

 He studied at Carnegie Mellon University in the United States and was

awarded B.S., M.S., and PhD degrees in electrical engineering by the university.
He has worked in both industry and academia and his approach aims to achieve

a middle way between theory and practice. His research has focused on real in-

dustrial problems that engineers face and on finding solutions to these practical
problems. Several organizations such as Phillips in the Netherlands; the Naval

Research Laboratory (NRL) in Washington; IBM Federal Systems Division; and

the Atomic Energy Board of Canada have benefited from his talent, expertise
and advice.

 He advocates a solid engineering approach to the development of high-

quality software and argues that software engineers2 today do not have the right

engineering education to perform their roles effectively. The role of engineers is

to apply scientific principles and mathematics to design and develop useful

products. The level of mathematics taught in most computer science courses is

1 I have been surprised that some of Parnas’s contributions (especially on information-hiding and its

role in the object-oriented world) do not seem to be well known among students.

2 Parnas argues that the term engineer should be used only in its classical sense as a person who is

qualified and educated in science and mathematics to design and inspect products. Parnas laments

that the evolution of language that has led to a debasement of the term engineer to include various

other groups who do not have the appropriate background to be considered engineers in the classical

sense. However, the evolution of language is part of life, and therefore it is natural for the meaning

of the term ‘engineer’ to evolve accordingly. It is a fact of life that the term engineer is now applied

to others as well as to classical engineers.

 144 Mathematical Approaches to Software Quality

significantly less than that taught to traditional engineers. In fact, computer sci-

ence graduates generally enter the workplace with knowledge of the latest popu-

lar technologies but with only a limited knowledge of the foundations needed to

be successful in producing safe and useful products. Consequently, it should not

be surprising that the quality of software produced today falls below the desired

standard as the current approach to software development is informal and based

on intuition rather than sound engineering principles. He argues that computer

scientists should be educated as engineers and provided with the right scientific

and mathematical background to do their work effectively. This is discussed

further later in this chapter.

8.2 Achievements

Parnas has made a strong contribution to software engineering. This includes

over 200 research papers, including contributions to requirements specification,

software design, software inspections, testing, tabular expressions, predicate
logic, and ethics for software engineers. He has made significant contributions

to industry and teaching. His reflections on software engineering are valuable

and contain the insight gained over a long career.

Area Description

Tabular ex-

pressions

Tabular expressions are mathematical tables that are em-

ployed for specifying requirements. They enable com-

plex predicate logic expressions to be represented in a

simpler form. They are used in mathematical documents.

Mathematical

documentation

He advocates the use of mathematical documents for

software engineering that are precise and complete.

These include documents for the system requirements,

system design, software requirements, module interface

specification, and module internal design.

Requirements

specification

His approach to requirements specification (developed

with Kathryn Heninger and others) is mathematical. It

involves the use of mathematical relations to specify the

requirements precisely.

 8. The Parnas Way 145

Software

design

His contribution to software design was revolutionary.

A module is characterized by its knowledge of a design

decision (secret) that it hides from all others. This is

known as the information hiding principle and allows

software to be designed for changeability. Every infor-

mation-hiding module has an interface that provides the

only means to access the services provided by the mod-

ules. The interface hides the module’s implementation.

Information hiding is used in object-oriented program-

ming.

Software

inspections

His approach to software inspections is quite distinct

from the well-known Fagan inspection methodology.

The reviewers are required to take an active part in the

inspection and are provided with a list of questions by

the author. The reviewers are required to provide docu-

mentation of their analysis to justify the answers to the

individual questions. The inspections involve the produc-

tion of mathematical tables.

Predicate logic He introduced an approach to deal with undefined val-

ues3 in predicate logic expressions. The approach is quite

distinct from the well-known logic of partial functions

developed by Cliff Jones [Jon:90].

Teaching He has taught at various universities including McMaster

University and Queens University in Canada.

Industry

contributions

His industrial contribution is impressive including work

on defining the requirements of the A-7 aircraft and the

inspection of safety critical software for the automated

shutdown of the nuclear power plant at Darlington.

Ethics for

software

engineers

He has argued that software engineers have a profes-

sional responsibility to build safe products, to accept

individual responsibility for their design decisions, and

to be honest about current software engineering capabili-

ties. He applied these principles in arguing against the

Strategic Defence Initiative (SDI) of the Reagan admini-

stration in the mid-1980s.

Table 8.1. Parnas’s Achievements.

3 His approach allows undefinedness to be addressed in predicate calculus while maintaining the 2-

valued logic. A primitive predicate logic expression that contains an undefined term is considered

false in the calculus. This is an unusual way of dealing with undefinedness and I consider his ap-

proach to be unintuitive. However, it does preserve the 2-valued logic.

 146 Mathematical Approaches to Software Quality

8.3 Tabular Expressions

Tables of constants have used for millennia to define mathematical functions.

The tables allow the data to be presented in an organized form that is easy to

reference and use. The data presented in tables provide an explicit definition of a

mathematical function, and the computation of the function for a particular value

may be easily done. The use of tables is prevalent in schools where primary

school children are taught multiplication tables and high school students refer to

sine or cosine tables. The invention of electronic calculators may lead to a re-

duction in the use of tables as students may compute the values of functions

directly from the electronic devices.

Tabular expressions are a generalization of tables in which constants

may be replaced by more general mathematical expressions. Conventional

mathematical expressions are a special case of tabular expressions. Conversely,

everything that can be expressed as a tabular expression can be represented by a

conventional expression. Tabular expressions may represent sets, relations,

functions and predicates, and conventional expressions. A tabular expression

may also be represented by a conventional expression but the advantage is that

the tabular expression is generally easier to read and use since a complex con-

ventional expression is replaced by a set of simpler expressions. Tabular expres-

sions have been applied to precisely document the system requirements.

Tabular expressions are invaluable in defining a piecewise continuous

function as it is relatively easy to demonstrate that the definition is consistent

and that all cases have been considered. However, the conventional definition of

a piecewise continuous function makes it easy to miss a case or to give an in-

consistent definition. The evaluation4 of a tabular expression is easy once the

type of tabular expression is known, as each table has rules for evaluation. Tabu-

lar expressions have been applied to practical problems including the precise

documentation of the system requirements of the A-7 aircraft described in

The discovery that tabular expressions may be employed to solve prac-

tical industrial applications led to a collection of tabular expressions that are

employed to document the system requirements. Initially, little attention was

given to the meaning of the tabular expressions as they worked defectively for

the problem domains. However, in later work Parnas [Par:92] considered the

problem of giving a precise meaning to each type of identified tabular expres-

sion in terms of their component expressions. One of Parnas’s former colleagues

(Janicki) at McMaster University in Canada observed that the tabular expres-

sions identified by Parnas were members of a species, and he proposed a more

general classification scheme to cover the species and to potentially identify new

members in the species. He proposed a more general model of tabular expres-

4 The evaluation of some of the tabular expressions is not obvious unless the reader is familiar with

the rules of evaluation for the particular tabular expression.

[Par:01].

 8. The Parnas Way 147

sions [Jan:97],and this approach was based on diagrams using an artificial cell

connection graph to explain the meaning of the tabular expressions. Parnas and

others have proposed a general mathematical foundation for tabular expressions.

The function f(x,y) is defined in the tabular expression below. The tabu-

lar expressions consists of headers and a main grid. The headers define the do-

main of the function and the main grid gives the definition. It is easy to see that

the function is defined for all values on its domain as the headers are complete.

It is also easy to see that the definition is consistent as the headers partition the

domain of the function.

The evaluation of the function for a particular value (x,y) involves de-

termining the appropriate row and column from the headers of the table and

computing the grid element for that row and column.

 y =5 y > 5 y < 5

x ≥ 0 0 y2 -y2

x < 0 x x+y x-y

Fig. 8.1. Tabular Expressions (Normal Table)

For example, the evaluation of f(2,3) involves the selection of row 1 of

the grid (as x = 2 ≥ 0 in H1) and the selection of column 3 (as y = 3 < 5 in H2).

Hence, the value of f(2,3) is given by the expression in row 1 and column 3 of

the grid: i.e., -y2 evaluated with y = 3 resulting in –9. The table simplifies the

definition of the function. Tabular expressions have been employed in practical

industrial projects to:

Applications of Tabular Expressions

Specify requirements

Specify module interface design

Description of implementation of module

Mathematical software inspections

Table 8.2. Applications of Tabular Expressions

Examples of Tabular Expressions

The objective of this section is to illustrate the usefulness of tabular expressions

by providing a comprehensive set of examples. The examples illustrate some of

the power of tabular expressions, although the examples presented here will be

limited to 2-dimensional tables.

The more general definition of tabular expressions allows for multi-

dimensional tables including multiple headers, and supports rectangular and

nonrectangular tables. The examples presented here will usually include two

headers and one grid, and the meaning of the tables is defined informally. The

role of the headers and grid will become clearer in the examples.

G

H2

H1

 148 Mathematical Approaches to Software Quality

Usually, the headers contain predicate expressions, whereas the grid

usually contains terms. However, the role of the grid and the headers change

depending on the type of table being considered.

Normal Function Table

The first table that we discuss is termed the normal function table and this table

consists of two headers (H1 and H2) and one grid G. The headers are predicate

expressions that partition the domain of the function; header H1 partitions the

domain of y whereas header H2 partitions the domain of x. The grid consists of

terms. The function f(x,y) is defined by the following table:

 x <0 x = 0 x > 0

y < 0 x2-y2 x2-y2 x2+y2

y = 0 x-y x+y x+y

y > 0 x+y x+y x2+y2

Fig. 8.2. Normal Table

The evaluation of the function f(x,y) for a particular value of x,y is given by:

1. Determine the row i in header H1 that is true.

2. Determine the column j in header H2 that is true.

3. The evaluation of f(x,y) is given by G(i,j).

For example, the evaluation of f(-2,5) involves row 3 of H1 as y is 5 (> 0) and

column 1 of header H2 as x is –2 (< 0). Hence, the element in row 3 and column

1 of the grid is selected (i.e., the element x + y). The evaluation of f(-2,5) is –2 +

5 = 3.

The usual definition of the function f(x,y) defined piecewise is:

f(x,y) = x2-y2 where x ≤ 0 ∧ y < 0;

f(x,y) = x2+y2 where x > 0 ∧ y < 0;

f(x,y) = x+y where x ≥ 0 ∧ y = 0;

f(x,y) = x-y where x < 0 ∧ y = 0;

f(x,y) = x+y where x ≤ 0 ∧ y > 0;

f(x,y) = x2+y2 where x > 0 ∧ y > 0.

The danger with the usual definition of the piecewise function is that it

is more difficult to be sure that every case has been considered as it is easy to

miss a case or for the cases to overlap. Care needs to be taken with the value of

the function on the boundary as it is easy to introduce inconsistencies. It is

straightforward to check that the tabular expression has covered all cases and

that there are no overlapping cases. This is done by examination of the headers

H2

H1

G

 8. The Parnas Way 149

and the headers to check for consistency and completeness. The headers for the

tabular representation of f(x,y) must partition the values that x and y may take

and this may be done by an examination of the header.

Normal relation tables and predicate expression tables are interpreted

similarly to normal function tables except that the grid entries are predicate ex-

pressions rather than terms as in the normal function table. The result of the

evaluation of a predicate expression table is a Boolean value of true or false,

whereas the result of the evaluation of the normal relation table is a relation. A

characteristic predicate table is similar except that it is interpreted as a relation

whose domain and range consist of tuples of fixed length. Each element of the

tuple is a variable and the tuples are of the form ((‘x1,’x2,…,’xn), (x1’,x2’,…,.xn’)).

Inverted Function Table

The second table that is considered is the inverted function table. This table is

different from the normal table in that the grid contains predicates, and the

header H2 contains terms. The function f(x,y) is defined by the following in-

verted table:

 x + y x – y xy

y < 0 x < 0 x = 0 x > 0

y = 0 x > 0 x < 0 x = 0

y > 0 x = 0 x < 0 x > 0

Fig. 8.3. Inverted Table

The evaluation of the function f(x,y) for a particular value of x,y is given by:

1. Determine the row i in header H1 that is true.

2. Select row i of the grid and determine the column j of row i that is

true.

3. The evaluation of f(x,y) is given by H2(j).

For example, the evaluation of f(-2,5) involves the selection of row 3 of

H1 as y is 5 (> 0) . This means that row 3 of the grid is then examined and as x is

–2 (< 0) column 2 of the grid is selected. Hence, the element in column 2 of H2

is selected as the evaluation of f(x,y) (i.e., the element x - y). The evaluation of

f(-2,5) is therefore –2 - 5 = -7.

The usual definition of the function f(x,y) defined piecewise is:

f(x,y) = x+y where x < 0 ∧ y < 0;

f(x,y) = x-y where x = 0 ∧ y < 0;

f(x,y) = xy where x > 0 ∧ y < 0;

f(x,y) = x+y where x > 0 ∧ y = 0;

H2

H1

G

 150 Mathematical Approaches to Software Quality

f(x,y) = x-y where x < 0 ∧ y = 0;

f(x,y) = xy where x = 0 ∧ y = 0;

f(x,y) = x+y where x = 0 ∧ y > 0;

f(x,y) = x-y where x < 0 ∧ y > 0;

f(x,y) = xy where x < 0 ∧ y > 0.

Clearly, the tabular expression provides a more concise representation

of the function. The inverted table arises naturally when there are many cases to

consider but only a few distinct values of the function. The function f(x,y) can

also be represented in an equivalent normal function table. In fact, any function

that can be represented by an inverted function table may be represented in a

normal function table and vice versa.

Inverted predicate expression tables and inverted relation tables are in-

terpreted similarly to inverted function tables except that the header H2 consists

of predicate expressions rather than terms. The result of the evaluation of an

inverted predicate expression table is the Boolean value true or false, whereas

the evaluation of an inverted relation table is a relation.

Vector Function and Mixed Vector Table

The next table that is considered is the vector function table. This table is differ-

ent from the normal table and inverted table in that the evaluation involves se-

lecting a column in the grid. Header H2 contains predicates and determines

which column should be selected in the grid. The contents of header H1 are vari-

ables and the result of the evaluation also involves an assignment to these vari-

ables.

 x < 0 x = 0 x > 0

y1 = 2 0 x+1

y2 = 4 1 x+2

y3 = 2 0 x-1

 Fig. 8.4. Vector Table

The evaluation of the function f(x) for a particular value of x is given by:

1. Determine the column j in header H2 that is true.

2. Select column j of the grid. This yields a column (or tuple of val-

ues).

3. The evaluation of f(x) is given by the tuple of values derived from

the grid. The variables y1, y2, and y3 are assigned to the tuple of val-

ues.

H2

H1 G

 8. The Parnas Way 151

f(x) = (2,4,2) where x < 0;

f(x) = (0,1,0) where x = 0;

f(x) = (x+1,x+2,x-1) where x > 0.

The elements in the grid of a mixed vector table may be predicate expressions or

terms. It is similar to the vector table in that the result of the evaluation involves

the selection of a column from the grid. Header H2 contains predicates and de-

termines which column should be selected. The contents of header H1 are vari-

ables and they are followed by = or |.

(∃ i, B[i]=x) (∀ i,¬(B[i]=x))

j’| B[j’]=x true

’ true false

 Fig. 8.5. Mixed Vector Table

The evaluation of the function f(x) for a particular value of x is given by:

1. Determine the column j in header H2 that is true.

2. Select column j of the grid. This yields a column (or tuple of val-

ues).

3. The evaluation of f(x) is given by the tuple of values derived from

the grid. The variables that are followed by = are assigned to the

corresponding values in the column of values. The variables fol-

lowed by | yield a relation such that the predicate expression is true

in the column.

The example above is concerned whether the element x appears in the array B.

Suppose x occurs in position 3 and 5 of array B. Then the result is that present is

set to true and the relation (j,3)(j,5) indicates the places in the array B where the

value x appears.5

Generalized Decision Table

The next table that is considered is the generalized decision table. This table is

different from the tables considered so far in that the evaluation involves first

substituting the entries in header H2 into the main grid. The result of the substi-

tution is that one row is true in the grid.

5 I considers the normal table and inverted table to be reasonably intuitive but am of the view that

the mixed vector table as unintuitive.

H2

H1

The usual definition of the function f(x) defined piecewise is:

present =

 152 Mathematical Approaches to Software Quality

 x + y xy x + 2y

xy 1 < # 1 = # 1 > #

x + 3y 2 < # 2 = # 2 > #

x2 3 < # 3 = # 6 > #

 Fig. 8.6. Generalized Decision Table

The evaluation of the function f(x,y) for a particular value of x,y is given by:

1. Substitute the terms in each column of header H2 for the # symbol

in the column of the grid.

2. Determine the row i of the grid that is true.

3. The evaluation of f(x,y) is given by H1(i).

The evaluation involves x + y being substituted for the # symbol in column 1 of

the grid; xy being substituted for the # symbol in column 2 of the grid; and x +2y

being substituted for the # symbol in column 3 of the grid. Consider the evalua-

tion of f(x,y) for x = 3, y = 1. Then x+ y is 4; xy is 3; and x+2y is 5. Thus row 3

is the only row of the grid in which all of the predicate expressions evaluate to

true. Thus f(3,1) is given by the evaluation of H1(3) = 32 = 9.

NRL Mode Transition Tables

The next table considered is the mode transition table and this table arose in

practice from an examination of the transitions of a system mode to a new mode

following the occurrence of a particular event.

Current Mode Event New Mode

Too Low TE(WaterPres ≥Low) Permitted

Permitted TE(WaterPres ≥Permit) High

Permitted TE(WaterPres < Low) Too Low

High TE(WaterPres <Permit) Permitted

 Fig. 8.7. Mode Transition Table

E

equal to or exceeding the value of “Low” has occurred. The evaluation of the

function for a particular mode m is given by:

1. Identify the rows (i, j, k …) that current mode m occurs in H1.

2. Identify the row r in (i, j, k …) in G that corresponds to the event

that has occurred.

3. The new mode is given by H2(r).

H2

G
H1

H1 H2G

The notation T (WaterPres ≥Low) means that the event of water pressure being

 8. The Parnas Way 153

Suppose the current mode is Permitted and the event TE(WaterPres < Low) oc-

curs. Then rows 2 and rows 3 of header H1 correspond to the current mode and

the event corresponds to row 3. Thus the new mode is ‘Too Low’ as given by

H2(3).

An equivalent formulation of the above mode transition table is given by a simi-

lar NRL mode transition table.

(WaterPres

≥ Low)

(WaterPres

≥ Permit)

(WaterPres <

Low)

(WaterPres

< Permit)

Current

Mode

 New Mode

Too Low TE - - - Permitted

Permitted - TE - - High

Permitted - - TE - Too Low

High - - - TE Permitted

Fig. 8.8. NRL Mode Transition Table

The evaluation of the function for a particular mode m is given by:

1. Identify the rows (i, j, k …) that current mode m occurs in header

H1. (Usually, only one row will apply).

2. Each row in the grid consists of one or more (event) functions of

one argument (as in H3). The rows (i, j, k …) are then applied to

the values in H3 (the argument of the function gp in column p is

determined from the value in column p of H3).

3. This result are rows (i, j, k …) where each row is a one dimen-

sional grid of Boolean values.

4. The logical or operation is then applied to the Boolean values in

each row to yield a Boolean value for each row.

5. This results in one row r that is true and the new mode is given by

H2 (r).

An example should help to make the above clearer. Suppose the current mode is

Permitted as before and that the event TE(WaterPres < Low) occurs. Then rows

2 and 3 of H1 are applicable as the current mode is Permitted, and rows 2 and 3

of the grid are selected.

H1 G H2

H3

 154 Mathematical Approaches to Software Quality

Next, rows 2 and 3 of the grid are applied to the values in H3 to yield 2 rows of

1-dimensional grids of Boolean values as below.6

F TE(WaterPres ≥ Permit) F F

F F TE(WaterPres < Low) F

Fig 8.9. Result of Function Application of Grid to H3

Next, the logical ‘or’ operation is then applied to the Boolean values to yield a

Boolean value for each row and this results in:

TE(WaterPres ≥ Permit)

TE(WaterPres < Low)

 Fig 8.10. Result of Logical ‘or’ of rows

These are the results from row 2 and row 3, and as the event TE(WaterPres <

Low) has occurred row 3 is the row to apply and the new mode is then given by

H2 (3), i.e., Too Low.

8.4 Software Development Documentation

Most mature software companies view documentation as an essential part of the
software development process. Companies may develop their own documenta-

tion standards or use existing standards (e.g., IEEE 1074 for software develop-

ment and IEEE 1059 for software verification and validation). The objective of
the documentation of the requirements is to ensure that all parties (the customer,

developers, and testers) share a common understanding of the proposed system,

and are therefore in a position to implement the system and verify its correct-
ness. The documentation of the design demonstrates how the system will be

implemented to satisfy the requirements. The developers will implement the

system in a programming language and software inspections verify the correct-
ness of the implementation with respect to the design and requirements. The

objective of the test documentation is to specify the test cases to be used in test-

ing to verify that the software satisfies the requirements.
The documentation employed by most companies (including the IEEE

standards) is informal and offers no mechanism to rigorously demonstrate that
the design satisfies the requirements or that the code satisfies the design. Instead,

companies employ inspections [Fag:76, Glb:94] carried out by experienced per-

sonnel and the objective is to verify that the documentation is correct and satis-
fies the requirements, and to identify defects in the requirements at the early

stages of the lifecycle.

Other disciplines such as engineering regard mathematics as an essen-
tial part of their work and most engineering documents include a substantial

6 I consider the evaluation of the NRL table to be cumbersome and view the table as unintuitive.

 8. The Parnas Way 155

amount of mathematics. This has led to interest in an engineering approach to

software documentation and to the use of mathematics for software documenta-
tion. The use of mathematics allows greater precision in the expression of the

requirements and allow rigorous software inspection [Par:94]. The following

mathematical documents have been proposed by Parnas in [Par:95]:

Mathematical Documents

Systems requirements document

System design

Software requirements

Module interface specification

Module internal design

 Table 8.3. Mathematical Documents

Each document has a set of objectives and addresses the needs of a spe-

cific audience. The objective of the requirements document is to ensure that all

parties have a precise mathematical understanding of the requirements of the

system. The mathematics employed allows a more rigorous demonstration of

correctness of the design than that achieved by natural language. Good docu-

mentation is used as a reference throughout the software development.

Most mature software companies expect software documents to be kept

up to date and to reflect the actual software product. However, in practice

[Let:03], the documentation is often out of date and this makes maintenance

more difficult. Mathematical documentation has been used in a number of soft-

ware projects, but its use is very much the exception rather than the general rule.

Some reasons for this include:

No. Low level of use of Mathematical Documentation

1. Many software engineers receive an elementary education
in mathematics.

2. Many customers have a limited background in mathemat-

ics and have a limited interest in learning mathematics.7

3. The conventional wisdom has been to use a natural lan-
guage such as English for writing documents.

4. A proven usable and cost effective approach to mathemati-

cal documentation (that has minimal impact on project cost

and schedule) has not been widely communicated.

5. There are no standards for mathematical software docu-
mentation.

 Table 8.4. Reasons for Low Level of User of Mathematical Documents

7 I recall mentioning that this was my experience to Parnas only to find that Parnas had different

experiences. However, I see my industrial experience as a little more comprehensive than Parnas’s,

and the exceptions that Parnas is familiar with really prove the rule.

 156 Mathematical Approaches to Software Quality

This section describes the Parnas approach to mathematical documenta-

tion [Par:95]. The only way that mathematical documentation will achieve gen-
eral use for future software projects is if it can be demonstrated to be cost

effective and that superior results will be achieved by their use.8 It needs to be
shown that the deployment of mathematical documentation leads to higher qual-

ity software with no significant adverse effect on the project schedule or cost, as

these are key drivers in most companies. Comprehensive empirical studies are
required to evaluate whether mathematical software documentation achieves

these goals.

The steps required to make mathematical documentation a reality in a
company include:

No. Step

1. Define a suite of standards for mathematical software
documentation.

2. Define the process for using mathematical documentation

and develop a case study with samples of the completed
mathematical documents.

3. Provide practical training on the mathematical standards

and on the process for mathematical documentation.

4. Conduct a pilot(s) of the standards and process within the

company and gather data on the effectiveness of the
mathematical approach. The results of the pilot need to be

communicated within the company. There may be a need

for some revisions to the standards or process.

5. Provide support and training to the project team should

difficulties arise with implementation of the standards in

early projects. This could potentially involve reviews by
an outside consultant to ensure that the mathematical docu-

ments are correct and achieve their purpose.

Table 8.5. Steps to Introduce Mathematical Documentation

Overview of Mathematical Documentation

The following mathematical documents are proposed by Parnas [Par:95] to be
part of the software development process:

8 Superior results means higher quality and software reliability, faster time to market, reduced costs

of development, and increased productivity. These need to be measured carefully before a judgment

is made as to whether a particular method has real added value. There have been some encouraging

results from the use of tabular expressions as a method for the precise documentation of software.

However, industrials will require clear quantitative data to make judgments on whether to pilot the

methodology. The bottom line is that the mathematical approach should be a more cost effective

solution than conventional approaches. I recall asking Parnas for empirical data to demonstrate that

his method achieved the superior results required.

 8. The Parnas Way 157

System re-
quirements

This is a black box description of the system and iden-

tifies the environment and quantities of concern to the
users and the constraints to be enforced by the system.

It associates a mathematical variable with each quantity

of concern to the user.

System design This document describes the computers in the system
and describes how they communicate. It defines the

relationship between the values in the input and output

register of each computer and the environmental quan-
tities identified in the system requirements document.

Software re-

quirements

The software requirements document is determined

from the system requirements document and the system
design document. It specifies the input-output behav-

iour of the software.

Module guide This document describes the division of software into

modules, and describes the responsibilities of each
module. The software modules must satisfy the re-

quirements.

Module inter-

face specifica-
tion

The module interface specification provides a black

box description of each module listed in the module
guide. It describes the externally-visible effects of us-

ing the module, and does not include implementation

details.

Internal design This document describes the data structure of each
module and specifies the effect of each access program

on the data structure. The module internal design is a

refinement of the module interface specification.

Uses-relation
document

This consists of a relation where the pair (P,Q) is in the
relation if program P of a module uses program Q of a

module. The range and domain of the uses relation are

subsets of the set of access-programs of the modules.

Software test

specification

This document describes the tests that will be con-

ducted in order to verify the correctness of the soft-

ware.

Other docu-
ments

Other documents that may potentially be employed as
part of the software process include data-flow docu-

ments, service specification document, protocol design

document, and the chip behaviour specification docu-
ment.

Table 8.6. Mathematical Documentation

Some of the key principles in the Parnas approach include:

Document Description

 158 Mathematical Approaches to Software Quality

Modularity is in accordance with the information-hiding

principle.

Verification of the design decisions against black box

specification.

Use of classical mathematics and predicate logic.

Use of tabular expressions to represent functions.

The mathematical documents are referred to during soft-

ware development.

The documents are placed under strict configuration

management control.

Table 8.7. Key Principles for Mathematical Documents

8.5 System Requirements

The Parnas approach to the specification of the system requirements is to em-

ploy mathematical relations and tabular relations. An early approach was based

on a 2-variable model and this involved generating a list of all the outputs from

the computer and another list of all the inputs to the computer. The next step

involves writing descriptions of mathematical functions that mapped the (history

of) values of the input variables to values of the output variables.

Fig. 8.11. Two Variable Model

The simple model proved to be too simple in practice as the mappings

from the inputs (values obtained from special purpose hardware) to outputs

(values that controlled specialized hardware) proved to be very complex in some

cases. The inputs and outputs from the computer were not visible to, or even of

interest to, the users. This led to a reexamination and revision of the model. 9

9 A black box specification for the system requirements is slightly cumbersome and it involves

defining responses in terms of the stimuli history. Often, the output is dependent on state data stored

in the computer as well as the inputs themselves, and I prefer the state-based approach to specifica-

C

otit

ot t

Environment

Computer

= C (i) for some computer C

Key Principles of Mathematical Documents

Top down design and black box specification.

 8. The Parnas Way 159

The 2-variable model evolved over time to become a 4-variable model.

In addition to the inputs and outputs produced by the software, there are vari-

ables representing the real interests of the users. These variables are termed

monitored and controlled environmental variables. These are the inputs and

outputs that the user of the system is aware of and interested in.

Fig. 8.12. The 4-Variable Model

The 4-variable model includes the use of four types of variables: moni-

tored, controlled, input, and output; and several relations including: REQ which

expresses the requirements of the system; NAT which expresses the constraints

on the values of the environment variables due to restrictions imposed by nature

or previously installed systems; the relation IN that specifies the input to the

computer; the relation SOF that specifies the behavior of the software, and the

relation OUT that specifies the output from the computer. The precise mathe-

matical formulation is described below:

Fig. 8.13. Acceptable Software Behavior

The diagram expresses the Parnas formula for the acceptability of the

software. The precise mathematical formulation is given by:

∀ mt ∀ it ∀ ot ∀ ct

tion as employed in Z or VDM. The response to a stimulus in the state-based approach involves a

change of state.

REQS (mt, ct)

SOF (it, ot) NAT (mt, ct)IN (mt, it) OUT (ot, ct)

Input

Devices

Input
Data (it)

Output
Data (ot)

Output

Devices

Computermt ct

Physical

Variables

measured by

Input

Devices

Physical

Variables

controlled by

Output

Devices

––

– –

 160 Mathematical Approaches to Software Quality

 [IN (mt, i t) ∧ SOF (i t, ot) ∧ OUT (ot, ct) ∧ NAT (mt, ct) REQS (mt, ct)]10

This formula seems very complicated and seems to bear little relationship to

requirements specification. However, the formula is essentially composed of

five mathematical relations IN, SOF, OUT, NAT, and REQS and in essence

describes the behavior that the software must exhibit to be acceptable for use

and for the system requirements to be satisfied. The terminology and individual

relations are described in detail later in this chapter.

In practice, a formal proof of this equation is rarely needed (or practi-

cal). Instead, it may be used to generate a set of checklists or testing criteria. The

mathematical documentation of the system requirements is discussed below.

Monitored Variables

These are the externally visible variables that the system needs to measure. They

are variables that the user of the system is aware of and include input data typed

by a user, the physical inventory monitored by an inventory system, account

balances, or the state of a switch. These environment variables are categorized

into those that are specific to the application, those that are common to hardware

devices, and those that are specific to hardware devices.

The collection of monitored variables is denoted by m1, m2,…,mn. Each

i
t

vector of time functions of monitored variables (m1
t, m2

t,…,mn
t) is denoted by

mt. A description of the physical quantity (including the physical interpretation)

is given for each monitored environment variable. This includes the name, set of

possible values, and data type of each monitored environment variable.

Mon Variable Description Type

EntBadgeId Determines the numeric badge id from

the electronic encoding of the badge.

Numeric

ValidBadgeIds Records the list of valid badges. Set of numeric

 Table 8.8. Monitored Environment Variables

Controlled Variables

These are quantities that the user of the computer system wishes to compute and

control such as signals to control external hardware (e.g., the setting of a switch

that controls the opening or closing of a door to “on” or “off ” depending on

whether the owner of the badge has sufficient authorization privileges to enter

the room). They also include variables that control the displayed balance of an

account (e.g., a credit card account) on a screen. They are usually continuous

10 The condition for the acceptability of the software is an elegant but complex formula and it is

debatable as to how easy it is to work with in practice. Parnas has extended the 4-variable model to a

5-variable model. However, I wonder how all this complexity helps.

of these monitored variables can be expressed as a function of time m and the

 8. The Parnas Way 161

real valued variables that exist outside the system and they control the computa-

tion of values, the settings of external devices, and the display of data on reports

or computer screens. The values of the controlled variables are derived from

operations involving the values of the monitored variables. The environment

variables are categorized into those that are specific to the application, those that

are common to hardware devices, and those that are specific to hardware de-

vices.

The collection of controlled variables is denoted by c1, c2,...,ck. Each of

these controlled variables can be expressed as a function of time ci
t and the vec-

tor of time functions of controlled variables (c1
t, c2

t ,..., ck
t) is denoted by ct. A

description of the physical quantity (including a physical interpretation) is given

for each controlled variable. It includes the data type and the set of all possible

values of each controlled variable.

The definition of DoorSetting is below. Its value determines whether

the door will be opened in response to the card being swiped. The second exam-

ple is a controlled variable that displays the savings account balance on the

screen.

Ctr Variables Description Type

DoorSetting The value of DoorSetting determines

whether the door will be opened.

Open or

Closed

DispSavAccBal Displays the savings account balance on

the screen

Numeric

 Table 8.9. Controlled Environment Variables

Environment Restrictions (NAT)

The environment may place constraints on the values of the controlled and

monitored variables. These constraints are expressed by defining the externally

visible input and output histories that can occur. These are recorded in the rela-

tion NAT (i.e., Nature). They express the restrictions imposed by nature (or by

previously installed systems) on the values of the environmental quantities. The

system requirements for the proposed system (i.e., REQ defined below) will

need to be feasible with respect to these constraints.

1. Dom(NAT) is a set of vector valued time functions containing the

possible values of mt.

2. Ran(NAT) is a set of vector valued time functions containing the

possible values of ct.

3. (mt, ct) ∈ NAT if the constraints allow the controlled variables to

take on the values described by ct when the values of the

monitored variables are described by mt.

 162 Mathematical Approaches to Software Quality

Behavioral Requirements (REQ)

The behavioral requirements of the computer system are given by the binary

relation REQ. This expresses the externally visible input and output histories

that the system should permit. There is usually one relation for each element of

C and occasionally one relation for all of C. The domain is a set of values for M

and the range is a set of values for C. Tabular notation is employed to define the

value of each controlled variable as a function of monitored variables. The rela-

tion REQ is defined mathematically as:

1. Dom(REQ) is a set of vector valued time functions containing the

permissible values of mt

2. Ran(REQ) is a set of vector valued time functions containing the

permissible values of ct.

3. The pair (mt, ct) ∈ REQ if the computer system allows the con-

trolled variables to take on the values described by ct when the

values of the monitored variables are described by mt.

The feasibility of the requirements REQ with respect to the environment con-

straints NAT needs to be verified. This requires that behavior is specified for

any input sequence that could occur. That is, for any given situation that NAT

says can arise, then REQ specifies an action that is allowed by NAT.

1. Check dom(REQ) ⊇ dom(NAT)

2. Check dom (REQ ∩ NAT) = dom(REQ) ∩ dom(NAT)11.

Mode Definitions

A mode class corresponds to a partitioning of the set of system states. There

may be several mode classes associated with the system. There are several

modes in each mode class, and each mode corresponds to a set of system states.

At any given moment of time the system is in exactly one mode from each mode

class, and initially the system is in the initial mode of each mode class. Events

trigger changes to the system mode, and the new mode is given by the mode

transition function.

The example below is concerned with water pressure in a water plant

system or a hydroelectric scheme. The water pressure within the plant may be

too low, within the permitted range or too high. The system has one mode class

(Mc_Operating) and there are three modes in the mode class. These modes re-

flect that the water level is too low, at the permitted level, or too high.

11 Condition 2 can be expressed as dom (REQ ∩ NAT) = dom(NAT) since dom(REQ) ⊇
dom(NAT).

 8. The Parnas Way 163

Mc_Operating Md_Too Low

Md_Permitted

Md_High

Md_Permitted

Table 8.10. Mode Classes and Modes

Events will cause a change in mode to occur; for example, a sudden

drop in water pressure will cause a mode transition from permitted to too low.

The mode transitions is defined by a mode transition table. The notation E(A)

indicates that the event A has occurred.

Old Mode Event New Mode

Md_Too Low E(M_WaterPres ≥ Low) Md_Permitted

Md_Permitted E(M_WaterPres ≥ Permit) Md_High

Md_High E(M_WaterPres < Permit) Md_Permitted

Table 8.11. Mode Transition Table

Exceptions and Undesired Events

Exceptions and undesired events that may occur need to be considered as other-

wise an improper response may result if designers have not considered what

should happen in these cases.

Timing and Accuracy Constraints

Precision and tolerance of the controlled and monitored variables needs to be

considered as these are continuous real valued numbers that are subject to the

variations in measurement that arise with physical devices. The ideal behavior is

specified in NAT and REQ, and the accuracy constraints specify the permitted

deviation from the ideal behavior.

The precision function is described on the individual monitored vari-

ables and a tolerance function is specified on the individual controlled variables.

A precision function on the vector of monitored variables m = (m1, m2,..., mn) is

given by P where P = (P1, P2,..., Pn) and Pi is the precision function of the moni-

tored variable mi . Similarly, the tolerance function can be specified for the con-

trol vector c = (c1, c2,..., cm) and is given by T where T= (T1, T2,..., Tn) and Ti is

the tolerance function of controlled variable ci.

Timing constraints are expressed using classical mathematics.12 Let t

be a time, and EC an event class. EC(P) = {(s,t) : P(s,t)} where P is a predicate

and s(t) is the environment state function. The time of the next event to occur is :

12 Parnas prefers to avoid using the temporal operators introduced by others and classical mathemat-

ics enables the timing to be dealt with effectively.

Mode Class Modes in Class Initial Mode

 164 Mathematical Approaches to Software Quality

 = ∞ (if no such t’ exists).

Assumptions and Expected Changes

The fundamental assumptions and likely changes to the system need to be iden-

tified early.

8.6 System Design and Software Requirements

The system design phase is concerned with the design decisions that determine

the number of computers, the physical hardware, and the nature of the intercon-

nections between these computers. There are two additional sets of variables: a

set of inputs (i.e., variables that can be read by the computers in the system) and

a set of outputs (i.e., variables whose values are determined by the computers in

the system).

Step Description

1. Identify the inputs to the computer (i.e., the input

alphabet).

2. Identify the outputs of the computer (i.e., the output

alphabet).

3. Define the relation IN

 • Dom(IN) is a set of vector valued time

 functions containing the possible values of mt

 • Ran(NAT) is a set of vector valued time

 functions containing the possible values of it

 • (mt, it) ∈ IN if it describes possible values of

 the input variables when mt describes the

 values of the monitored variables.

4. Define the relation OUT.

 • Dom(OUT) is a set of vector valued time

 functions containing the permissible values

 of ot

 • Ran(OUT) is a set of vector valued time

 functions containing the permissible values

 of ct

 • (ot, ct) ∈ OUT if the computer system allows

 the controlled variables to take on the values

 described by ct when ot describes the values of

 the output variables.

5. Check the validity of IN with respect to NAT: (i.e.,

dom (IN) ⊇ dom(NAT)).

 Table 8.12. System Requirements

Next(EC,t) = t’, t’ is the smallest time such that (t’> t) ∧ (s,t) ∈ EC

 8. The Parnas Way 165

The software requirements are determined from the system requirements and the

systems design. The software requirements (input-output behavior of the soft-

ware) are defined in the relation SOF.

Step Description

1. Dom(SOF) is a set of vector valued time functions

containing the possible values of it

2. Ran(SOF) is a set of vector valued time functions

containing the possible values of ot

3. (it, ot) ∈ SOF iff the software can take on the values

described by ot when it describes the values of the

input variables.

 Table 8.13. Software Requirements

The relation SOF is redundant as it may be derived from IN, OUT and REQ.

SOF = OUT-1
o (REQ o IN-1).

8.7 Software Design

Many software projects are too large (e.g., >100 person years) to be completed

by a single person in a short period. Therefore, the software needs to be divided
into a number of modules (components) that can be developed separately in

order to produce the software product in a timely manner. Each module is a

work product for a person or team. The actual decomposition is usually decided
by management and involves assigning staff to carry out project work based on

the expertise available.

 Large programs are generally more complex than smaller programs
with several programmers involved, lots of tiny details to be remembered, and

no one person knowing everything about the program. Communication becomes

more difficult in larger teams, and care is needed to ensure that if a change to the
requirements or design occurs that all affected parties are informed and aware of

the change.

The division of a product into separate parts is an essential part of
manufacturing, and the component parts are then combined to form the product.

The components may be manufactured in separate locations. Hardware compo-

nents have a well-defined interface that specifies its behavior and it is clear how

A software system consists of modules that are combined to form a lar-
ger system. There are several different ways to put software modules together to

form the software product and they may be combined at different times (e.g.,
during compile time, linking of object programs or running a program in limited

and when the hardware components are to be combined to form the larger product.

 166 Mathematical Approaches to Software Quality

memory). The way that software programs may be combined places constraints

on changing each module independently of the others, the names employed in
the modules, and the size of memory.

Parnas revolutionized the approach to software design and module de-

composition by advocating stated technical criteria to perform effective module
decomposition [Par:72]. He advocates that the specification of the module

should focus on what the module should do rather than how it should be done

(i.e., the specification of the software module should abstract away from the
implementation details). The abstract specification allows the developer the

maximum amount of freedom in choosing the best implementation of the model.

The heart of the Parnas design philosophy is information hiding13 and
this allows a module to access a second module without needing to know the

implementation details of the second module. This is achieved by the concept of
the “secret” of the module and the module interface specification. The Parnas

approach allows modules to be designed and changed independently. They may

be divided into smaller modules and reused. The approach is to identify the de-

sign decisions14 that are likely to change, and to then design a module to hide

each such design decision. The approach of designing for change in require-
ments or system design requires knowing what these changes might be. Change

therefore needs to be considered as early as possible in the requirements phase.

Information hiding is the vehicle in designing for change. Every infor-
mation hiding module should have an interface that provides the only means to

access the services provided by the module. The secret is a design decision that

may be changed without affecting any other module. A secret may be a data
structure or an algorithm. A data structure that is the secret of the module is in-

ternal to the module rather than external, and a change to the definition of the

data structure changes just one module (i.e., the module of which it is the secret)
and other modules are not affected. Similarly, a secret algorithm is not visible

outside the module, and should the particular algorithm be changed, then there is

no impact on other modules. A shared secret is not a secret and a module is not
aware of the secret of any other module. Information hiding is an essential part

of good class design in object-oriented programming.

Often, in poorly designed systems there are unnecessary connections.
For example, code may be duplicated in the system or modules may contain

code that is dependent on data structure design decisions in other modules.

Clearly, these modules are not designed for changeability, as a change in one
module requires changes in several other modules. The Parnas design procedure

for large programs is as follows:

13 I see information hiding as Parnas’s greatest achievement.

14 Of course, identifying and predicting all likely changes to the software is impossible in some

domains. It would require sound product and marketing knowledge; prediction of future consumer

behavior; prediction of future technology trends, etc. However, it is important to identify as many

likely changes as is feasible as this will enable the software to be designed as far as is practical for

change.

 8. The Parnas Way 167

Step Description

1. Decompose the system into a set of modules with each
module designed in accordance with the information

hiding principle. Identify the secrets (i.e., the design
decisions that are likely to change). It is essential that

the secret should not be shared.

2. Design an information-hiding interface for each secret.

 Implementation of the access programs is based
upon the secrets. (The access programs are externally

visible to the other modules).

 The interface does not change if the secret changes.

3. Specify all of the interfaces precisely. This is done us-
ing trace specifications.

4. Implement each module independently using only in-

terface information.
 One module may use the access programs of an-

other module.

 Program from one module cannot use the hidden
data structures or internal programs from another mod-

ule.

Modules should be kept small with just one secret.
 Table 8.14. Designing for Change

Engineers are required to design and build products that are safe for the

public to use, and a good design is essential to the delivery of a high-quality
product that will meet customer expectations. The design of the product must

satisfy the system requirements and the components of the product are detailed

in the design. The software field has been ineffective in developing components

that may be reused15 in various applications.

 The quality of the design will determine how easy it is to change the

software over time. Ease of change is essential for good maintainability of the
software, as often customers will identify further desirable to enable them to

achieve their business objectives more effectively. Change therefore needs to be

considered as early as possible.
Information hiding allows modules to be designed and changed inde-

pendently. They may be divided into smaller modules and reused. Designing for
change requires a focus on identifying what the likely changes might be early in

the software development process. An evaluation of what changes the module

decomposition can handle can be determined by comparing the list of changes
the design can easily accommodate with the list of expected changes.

15 Parnas has joked that we have developed all of this reusable software that is never reused.

 168 Mathematical Approaches to Software Quality

Module Interface Design

The interface between two modules consists of all the assumptions that the de-

veloper of each module has made about the other. If the correctness of one mod-

ule can only be demonstrated by making an assumption about another module,
and a change in the other module makes that assumption false, then the first

module will have to change. It is therefore essential to be aware of the assump-

tions implicit in an interface. If many parts of the software are based on an as-
sumption in a particular interface, and the assumption is invalid, then there is a

need to change many parts of the software.

The Parnas approach to interface design is to use an abstract interface
rather than a concrete interface. This is an interface that models some (but not

all) properties of an actual interface. It is a precise formally specified interface
that is a model of all expected actual interfaces. All things that are true of the

abstract interface must be true of the actual interface. Abstract interfaces involve

eliminating details, especially the details that are likely to change. Abstractions
are simplifications of the reality and they apply in many situations (each situa-

tion shares the abstraction but differs in things that are abstracted from).16

If the abstract interface is designed correctly then real world changes
that affect the actual interface affect only the interface programs provided that

the assumptions in the abstract interface remain valid. The abstract interface is

specified using trace assertions. The design of an abstract interface involves:

Step Description

1. The module interface specification is a black box description

of the modules. It specifies how the access programs may be

accessed from other modules. The interface specification will

not have to change if the program (or secret) changes.

2. Prepare a list of assumptions about properties of all the possi-

ble real world interfaces to be encountered. Review and revise

the list of assumptions.

3. Express these assumptions as a set of access programs (opera-
tors, method). This will be the basis of a module specification.

4. Perform consistency checks

 Verify that any property of the access program set is im-
plied by the assumptions.

 Verify that all assumptions are reflected in the interface

specification.
 Verify that the bulk of the system can be written using

these access programs.
 Table 8.15. Module Interface Specification

16 This is similar to the refinement of an abstract specification into a more concrete specification.

There are many concrete specifications that satisfy the abstract specification, reflecting the fact that

the designer has a choice in the design of the system. A valid refinement is required to satisfy the

well-known commuting diagram property.

 8. The Parnas Way 169

Trace Assertion Method

The trace assertions method is employed to specify the module interface specifi-

cation. Each module consists of a hidden data structure (or object) and a set of

access programs that may be invoked externally by other modules. The access
programs are the only programs that may alter the data structure. The trace as-

sertion method provides a black box description of the module without revealing

the implementation of the module. This gives the programmer freedom in choice
of implementation to satisfy the requirements of the module.

 A trace consists of a sequence of events. Each event consists of the

access program name and the values of its arguments. Two traces are equivalent
if the resulting behavior of the module is identical for each trace. There will

generally be many traces equivalent to a particular trace, and the set of traces
equivalent to a particular trace is termed the equivalence class of the trace. A

canonical trace is chosen as a representative of the equivalence class. A trace

describes all data passed to and returned from the module, and is a way to de-
scribe effects where the visibility of the effect is delayed.

The behavior of a module interface specification is described by traces (i.e.,

sequences of discrete events). The trace assertion specifications comprise three

groups of relations:

Relation Description

1. Functions whose domain is a set of pairs (canonical

traces, event) and whose range is the set of canonical

traces.17 The pair ((T1,e),T2) is in the function fE iff the

canonical trace T2 is equivalent to the canonical trace T1

extended by the event e.

2. Relations RO whose domains contain all the canonical

traces and whose range is a set of values of output vari-

ables.

3. Functions fV whose domain is the set of values of the

output variables and whose range defines the informa-

tion returned by the module to the user of the module.

Table 8.16. Relations in Trace Assertion Method (TAM)

Internal Design

The documentation of the module design involves producing the module guide,

the module interface specification, the uses relation and the module internal de-

sign. Large systems are decomposed into modules with each module then im-

plemented by one or more programmers. The modules are designed according to

the information hiding principle.

 The module guide is an informal document that describes the division

of the software into modules and includes a precise and complete description of

17 A canonical trace is a finite subset of the infinite set of possible traces.

 170 Mathematical Approaches to Software Quality

each module. It makes it easy for maintainers of the system to find the module

that they are looking for and to make changes or corrections. The secret of each

module is detailed in the module guide. The module guide is produced by the

designers and used by the maintainers. The responsibilities of each module are

documented.

The module interface specification is a black box description of the

modules. It specifies how the access programs may be accessed from other
modules. The module internal design describes the data structure of each module

and specifies the effect of each access program on the data structure. The uses

relation describes the relation between the access programs of modules with pair
(P,Q) in the uses relation if access program P uses access program Q.

The internal design of a module includes three types of information:

Part Description of Internal Design

1. A complete description of the data structure.

2. An abstraction function f such that (((o,d), T) ∈ f if and

only if a trace equivalent to T describes a sequence of

events affecting the object o that could have resulted in

data state d.

3. An LD relation18 (known as the program function) that

specifies the behavior of each program in the module in

terms of mapping from data states before execution to

data states after execution.

Table 8.17. Internal Design Description

8.8 Software Inspections

The Parnas approach to software inspection offers a rigorous mathematical ap-

quite distinct from the well-known Fagan Inspections developed by IBM in the

mid-1970s. It has been successfully employed in the safety critical field (e.g., in

the inspection of the shutdown software for the nuclear power plant at Darling-
ton, Canada). The use of mathematical documents is at the heart of the proce-

dure as the mathematics allows complete coverage.

Tabular expressions are employed to provide a systematic examination
of all cases to take place. Some of the key features of Parnas inspections include

[PaW:01]:

18

ordered pair (RL, CL) where RL is a relation on the set of states U and CL is a subset of Dom RL. CL is

termed the competence set of the LD relation. Termination is guaranteed if execution commences in

a state in the competence set of the relation.

 The effect of executing a program is described by an LD relation. An LD relation consists of an

proach to finding defects and to verifying the correctness of the software. It is

 8. The Parnas Way 171

No. Feature

1. All reviewers are actively involved. The author (de-

signers) pose questions to the reviewers rather than
vice versa.

2. Several types of review are identified. Each review

type focuses on finding different types of errors.

3. Each review requires specific expertise to be avail-

able.

4. Reviewers with the right expertise are chosen. The
effort of a reviewer is focused

5. Reviewers are provided with a questionnaire and are

required to study the document(s) carefully in order
to find answers to the questions. They are required to

justify their answers with (mathematical) documenta-

tion.

6. The reviewers proceed systematically so that no case
or section of program is overlooked.

7. Issues raised by reviewers are discussed in small

meeting with the author/designer.

8. Most reviews are tightly focused. There is one overall

review to decrease likelihood that problems have
been overlooked.

Table 8.18. Characteristics of Parnas Inspections

Conventional reviews may be criticized on the grounds that they lack
the rigour associated with mathematical reasoning, and do not provide a rigorous

mechanism to ensure that all cases have been considered, or that a particular

case is correct. The Fagan {Fag:76} or Gilb [Glb:94] style review focuses on the
management aspects of software inspections including the role of the partici-

pants, the length of the meeting, and the forms for reporting. Their approach is

to paraphrase a document or code in a natural language, and although these ap-
proaches yield good results, the Parnas approach offers the extra rigor that is

achieved by the use of mathematics and tabular expressions. This is especially

important for the safety critical field.19

Software inspections play a key role in building quality into a software

product, and testing plays a key role in verifying that the software is correct and
corresponds to the requirements. There is clear evidence that the cost of correc-

tion of a defect increases the later in the development cycle in which the defect

is detected. Consequently, there is an economic argument to employing software
inspections as there are cost savings in investing in quality up front rather than

adding quality later in the cycle.

19 Parnas inspections are unlikely to be cost effective in mainstream software engineering. I have

seen no empirical data on the amount of time needed for a Parnas inspection. The results of the

safety inspection of the Darlington software is impressive, but it was very time consuming (and

expensive). Some managers in Darlington are now less enthusiastic in shifting from hardware to

software controllers [Ger:94].

 172 Mathematical Approaches to Software Quality

The well-known Fagan inspection methodology and the Gilb method-

ology include preinspection activity, an inspection meeting, and postinspection
activity. Several inspection roles are employed, including an author role, an in-

spector role, a tester role, and a moderator role.

The formality of the inspection methodology used depends on the type
of business of the organization. For example, telecommunications companies

tend to employ a very formal inspection process, as it is possible for a one line

of code change to create a major telecommunications outage. Consequently, a
telecommunications company needs to ensure that the quality of the delivered

software is fit for use, and a key part of building in the desired quality in is the

use of software inspections.

The quality of the delivered software product is only as good as the

quality at the end of each particular phase. Consequently, it is desirable to exit

the phase only when quality has been assured in the particular phase. Software

inspections assist in ensuring that quality has been built into each phase, and

thus ensuring that the quality of the delivered product is good.

Fagan Approach to Inspections

The Fagan methodology is a seven-step process, including planning, overview,

preparation, inspection, process improvement, rework, and follow-up activity.

Its objectives are to identify and remove errors in the work products, and also to
identify any systemic defects in the processes used to create the work products.

A defective process may lead to downstream defects in the work products.

The process stipulates that requirement documents, design documents,
source code and test plans all be formally inspected by experts independent of

the author, and the experts inspect the deliverable from different viewpoints, for

example, requirements, design, test, customer support, etc.
There are various roles defined in the inspection process, including the

moderator, who chairs the inspection, the reader, who paraphrasing the particu-

lar deliverable and gives an independent viewpoint, the author, who is the crea-
tor of the deliverable; and the tester, who is concerned with the testing

viewpoint. The inspection process will consider whether a design is correct with

respect to the requirements, and whether the source code is correct with respect
to the design. The Fagan inspection process is summarized by:

Step Description

Planning This includes identifying the inspectors and their roles,
providing copies of the inspection material to the partici-

pants, and booking rooms for the inspection.

Overview The author provides an overview of the deliverable to the

inspectors.

Prepare All inspectors prepare for the inspection and the role that

they will perform.

Inspection The actual inspection takes place and the emphasis is on
finding major errors and not solutions.

 8. The Parnas Way 173

Process im-

provement

This part is concerned with continuous improvement of

the development process and the inspection process.

Rework The defects identified during the inspection are cor-
rected, and any items requiring investigation are re-

solved.

Follow up

activity

The moderator verifies that the author has made the

agreed-upon corrections and completed any investiga-

tions.
 Table 8.19. Fagan Inspections

The successful implementation of a software inspection program gen-

erally has positive impacts on productivity, quality, time to market, and cus-

tomer satisfaction. For example, IBM Houston employed software inspections
for the Space Shuttle missions: 85% of the defects were found by inspections

and 15% were found by testing. This project includes about two million lines of

computer software. IBM, North Harbor in the United Kingdom quoted a 9%
increase in productivity with 93% of defects found by software inspections.

 Software inspections have other benefits including their use in educat-

ing and training new employees about the product and the standards and proce-
dures to be followed. Sharing knowledge reduces dependencies on key

employees. High-quality software has an immediate benefit on productivity, as
less time and effort are devoted to reworking the defective product.

 The cost of correction of a defect increases the later the defect is identi-

fied in the lifecycle. Boehm [Boe:81] states that a requirements defect identified
in the field is over forty times more expensive to correct than if it were detected

at the requirements phase. It is most economical to detect and fix the defect in

the phase that it was introduced. The cost of a requirements defect which is de-
tected in the field includes the cost of correcting the requirements, and the cost

of design, coding, unit testing, system testing, regression testing, and so on.

Parnas Approach to Inspections

The use of mathematical documents is at the heart of the approach as the

mathematics allows complete coverage. Tabular expressions are employed and
these allow a systematic examination of all cases to take place. The Parnas ap-

proach is especially valuable in reviewing critical areas of code, where the cost

of failure is high, either financially or in loss of life.

The inspection of a document should first identify and list the desired

properties of the document. A schedule of inspections is then planned and re-

viewers with the appropriate background chosen. The reviewers focus on the

area of their expertise and they are required to take an active role in the inspec-

tion and to justify or reject design decisions. The reviews may focus on check-

ing that the assumptions made are valid, sufficient, and consistent with the

function descriptions of each module. The adequacy of the access programs to

meet all of the requirements will also be checked.

 174 Mathematical Approaches to Software Quality

The reviewers are supplied with a questionnaire to perform the docu-

ment review. This forces the reviewers to think carefully and to understand the

document, as the answers to the questions require a thorough understanding.

The questionnaire is designed to describe the properties that the reviewer needs

to check and ensures that the reviewer takes an active part in the review. For

example, some sample questions in the questionnaire for a review to verify the

consistency between assumptions and functions may be:

No. Questions

1. Which assumptions tell you that this function can

be implemented as described.

2. Under what conditions may the function be ap-
plied?

 Table 8.20. Questions at Parnas Inspections

Open-ended questions are employed to force the reviewer to analyze,

understand, and make a judgment based upon the facts. The issues raised by the

reviewers are discussed in small meetings between the reviewer and designer.

The reviewers actively use the code and focus on small sections for the code

inspections. The hierarchical structure of the code is exploited rather than pro-

ceeding sequentially through the code. The approach is systematic with no case

or section of program overlooked. Precise summaries of each short section of

code are produced using the tabular expressions. The actual code is then com-

pared with its mathematical description to ensure its correctness.

8.9 Tools

Parnas has been active in developing a set of tools to support his tabular expres-

sions. His SQRL group in Canada developed a suite of tools20 to support the

tabular expressions and Science Foundation Ireland has provided Parnas with

€5-6 million of funding to develop a software quality research laboratory

(SQRL) at the University of Limerick in Ireland and to develop an enhanced set

of tools for the tabular expressions. These tools will include:

• Tabular expression editor

• Printing tabular expressions

• Pre-evaluation checking tool

• Table completeness and consistency checks

20 However, these early tools produced in Canada were a long way from the industrial strength

required. The author will be interested in seeing the results from SQRL (www.sqrl.ul.ie) at the

University of Limerick.

 8. The Parnas Way 175

8.10 Summary

David L. Parnas has been influential in the computing field, and his ideas on

software engineering remain important. He advocates a solid engineering ap-

proach to the development of high-quality software. Software engineers should

apply mathematical and scientific principles to design and develop useful prod-

ucts. He argues that computer scientists should be educated as engineers and

should have the right mathematical background to do their work effectively. His

contributions include:

• Tabular Expressions

Tabular expressions enable complex predicate logic expressions to be

represented in a simpler form.

• Mathematical Documentation

These include mathematical documents for the system requirements,

system design, software requirements, module interface specification,

and module internal design.

• Requirements Specification

This includes a mathematical model (consisting of relations) to specify

the requirements precisely.

• Software Design

A module is characterized by its knowledge of a design decision (se-

cret) that it hides from all others. The information hiding principle al-

lows software to be designed for changeability.

• Software Inspections

The inspections involve the production of mathematical tables, and

may be applied to the actual software or documents.

• Predicate Logic

Parnas has introduced an approach to deal with undefined values in

predicate logic expressions.

9

Cleanroom and Software Reliability

9.1 Introduction

The Cleanroom approach to software development employs mathematical and

statistical techniques to produce high-quality software. The approach was devel-

oped by Harlan Mills and others and has been used successfully at IBM. The

approach uses mathematical techniques to build quality into the software, and to

demonstrate that the program is correct with respect to its specification. Clean-

room also provides certification of the quality of the software based on the ex-

pected usage profile of the software.

Software reliability is the probability that the program works without

failure for a specified length of time, and is a statement on the future behavior of

the software. It is generally expressed in terms of the mean time to failure

(MTTF) or the mean time between failure (MTBF).

The release of an unreliable software product at best causes inconven-

ience to customers, and at worst can result in damage to property or injury to a

third party. Consequently, companies need a mechanism to judge the fitness for

use of the software product prior to its release and use. The software reliability

models are an attempt to predict the future reliability of the software and to

thereby assist the project manager in deciding on whether the software is fit for

release.

The correction of defects in the software leads to newer versions of the

software, and most of the existing reliability models assume reliability growth:

i.e., the new version is more reliable than the older version. However, it is essen-

tial to gather data to verify this, and some sectors in the safety critical field take

the view that the new version is a new program and that no inferences may be

drawn until further investigation has been done.

There are many reliability models in the literature and the question as

to which is the best model or how to evaluate the effectiveness of the model

arises. A good model will have good theoretical foundations and will give useful

predictions of the reliability of the software.

 9. Cleanroom and Software Reliability 177

9.2 Cleanroom

The objective of the Cleanroom approach is to design software correctly, and to

certify the software quality based on the predicated operation usage of the soft-

ware. The approach was developed by Harlan Mills and others [Mil:87]. The

description of Cleanroom presented here is based on [CoM:90]. The key features

of Cleanroom include:

Features of Cleanroom

• Specification of statistical usage of software

• Incremental software construction

• Uses rigorous mathematical engineering practices

• Functional verification of software units

• Statistical testing based on usage profiles

• Certification of software quality (MTTF)

• Testing performed independently of development

 Table 9.1. Features of Cleanroom

The Cleanroom approach uses development methods that are based on

mathematical function theory. The objective is that each function should be

complete, consistent, and correct with respect to the requirements. Black box,

state box, and clear box development methods are employed for specification

and design. The specification is given by a black box description, and this gives

an external view of the system in terms of a mapping from the history of the

inputs to the outputs of the system. This is then transformed into a state machine

view by adding states to reflect the history of inputs, and this is the first step

toward implementation. A new state is given by a transition from the current

state and input, and the stimulus history no longer needs to be considered, since

the current state is a reflection of the input history. The state box is then trans-

formed into a clear box view by adding the procedures that will carry out the

state transitions. This may require the introduction of further black boxes for

major operations. Each box structure is reviewed to verify its correctness; for

example, the correctness of a clear box is demonstrated by showing that it is a

valid refinement of the state and black boxes.

Cleanroom follows an iterative and incremental process for software

development. Each iteration involves the development of user function software

increments, and this eventually leads to the final product. The process includes

reviews to build quality into the product and to verify that quality has been built

in. These include development reviews and verification reviews. Development

reviews focus on technical issues such as the specification, data structures, algo-

rithms, and the emphasis is on identifying and including good ideas. Verification

reviews focus on correctness and completeness of work products. The code is

reviewed against the specification and design. Any changes to a work product

are subject to a subsequent review.

 178 Mathematical Approaches to Software Quality

Cleanroom employs mathematical proof to verify the units of software

logically rather than using debugging techniques. The Cleanroom approach to

unit verification involves showing that the program is a complete rule for a sub-

set of the specification. This is true since a specification is a function or relation

whereas a program is a rule for a function. The advantages of the mathematical

approach over debugging is:

Cleanroom vs. Debugging

• Design errors are identified earlier.

• Eliminates need for unit testing and debugging.

• Unit is demonstrated to meet its specification by

 logical argument.

• It takes less time than conventional unit testing and

 debugging.

• Eliminates introduction/finding of subtle defects by

 debugging.

 Table 9.2. Cleanroom vs. Debugging

Functional verification [Mil:79] is the approach used in Cleanroom to

verify the correctness of large programs. This involves structuring the proof that

a program implements its specification correctly. The program specification is a

function (or relation) and the program is a rule for the function. Hence, the proof

must show that the rule (program) correctly implements the function (specifica-

tion). Mills and others applied these techniques in IBM and trained engineers to

communicate with other engineers in terms of proofs. They observed that:

Cleanroom Results

• Engineers find the mental challenge of functional

 verification to be more stimulating than debugging.

• Functional verification is well within the capability

 of engineers (after training).

• Many engineers enjoyed the teamwork associated

 with functional verification.

• Improved quality of engineer’s work.

• Improved productivity of engineer.

 Table 9.3. Cleanroom Results

The Cleanroom approach to software testing is quite distinct in that it

employs statistical usage testing rather than designing tests that cover every path

through the program (coverage testing). The tester draws tests at random from

expected usage. The tester is required to understand what the software is ex-

pected to do and its usage profile. The tester then designs tests that are represen-

tative of the expected usage. An execution of the software that does not do what

the population of all uses of the software, in accordance with the distribution of

 9. Cleanroom and Software Reliability 179

it is required to do is termed an execution failure. Some execution failures are

frequent, whereas others are infrequent. Clearly, it is essential to identify any

frequent execution failures, as otherwise the users of the software will identify

problem with coverage testing is that a tester is equally likely to find a rare exe-

cution failure as a frequent execution failure. When a tester discovers an execu-

corrected.

The advantage of usage testing (that matches the actual execution pro-

file of the software) is that it has a better chance of finding the execution failures

that occur frequently. The goal of testing is to eliminate frequent execution fail-

ures and to maximize the expected mean time to failure. The weakness of cover-

age testing is evident from the study of nine major IBM products by Adams

[Ada:84] as illustrated in the table below:

 Rare Frequent

 1 2 3 4 5 6 7 8

MTTF

(years)

5,000 1,580 500 158 50 15.8 5 1.58

Avg %

failure

33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Probability

failure

0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

Table 9.4. Adam’s Study of Software Failures of IBM Products

The analysis on coverage testing by Adams shows that 61.6% of all

fixes (Group 1 and 2) were made for failures that will be observed less than once

in 1,580 years of expected use, and that these constitute only 2.9% of the fail-

ures observed by typical users. On the other hand, Groups 7 and 8 constitute

53.7% of the failures observed by typical users and only 1.4% of fixes. There-

fore, coverage testing is not cost effective in increasing MTTF. Usage testing, in

contrast, would allocate 53.7% of the test effort to fixes that will occur 53.7% of

the time for a typical user. Mills has calculated that the data in the table show

that usage testing is 21 times more effective than coverage testing [CoM:90].

Cleanroom usage testing requires that the expected usage profile of the

system be determined. The population of all possible usages is then sampled in

accordance with the expected usage profile. The tests are drawn at random from

the population of all possible usages in accordance with the expected usage pro-

file. A record of success and failure of the execution of the individual tests is

maintained and used to estimate the software reliability.

Cleanroom plays a key role in developing zero-defect software. It al-

lows a probability measure to be associated with the software (based on the pre-

dicted operational usage of the software). The software is released only when

the probability of zero defects is very high. This involves the use of statistical

tion failure the software is then analyzed by the software engineers and

these, resulting in a negative user perception of the software company. One

 180 Mathematical Approaches to Software Quality

quality control and analysis of the predicted usage profile of the software. The

Software Engineering Institute (SEI) has developed the Cleanroom Reference

Model [LiT:96] and this includes management, specification, development and

certification processes.

Some of the results on the benefits of using Cleanroom on projects at

IBM [CoM:90] are detailed in the table below. These results include quality and

productivity measurements.

Project Results

Flight Control (1987)

33KLOC

Completed ahead of schedule.

Error-fix effort reduced by factor of five.

2.5 errors KLOC before any execution

Commercial Product

(1988)

Deployment failures of 0.1/KLOC.

Certification testing failures 3.4 / KLOC

Productivity 740 LOC/month1

Satellite Control

(1989) 80 KLOC

(partial Cleanroom)

50% improvement in quality

Certification testing failures of 3.3 / KLOC

Productivity 780 LOC/month

80% improvement in productivity

Research Project

(1990) 12 KLOC

Certified to 0.9978 with 989 test cases

 Table 9.5. Cleanroom Results in IBM

The next section discusses the actual Cleanroom software development process

that engineers are required to follow to achieve high-quality software. It is

known as Cleanroom software engineering.

Cleanroom Software Development Process

The Cleanroom software development process enables engineers to create high-

quality software consistently. There are three teams involved in a Cleanroom

project, namely the specification team, the development team, and the certifica-

tion team. The Cleanroom software development process involves the following

phases:

• Specification

The specification team prepares and maintains the specification and

specializes it for each development increment. A rigorous formal speci-

fication document is completed and approved prior to commencing de-

sign and development. The specification document consists of three

parts, namely the external specification, the internal specification and

the expected usage profile.

1 Care needs to be taken with productivity measures based upon lines of code.

 9. Cleanroom and Software Reliability 181

The external specification describes how the software will

tem environment, system use, performance, etc. It is written in lan-

guage that users understand.

The internal specification is more mathematical and com-

pletely states the mathematical function (or relation) for which the pro-

gram implements a rule. This definition is required in order to correctly

implement and to verify the correctness of the program. However, the

internal specification is implementation independent and allows the de-

signers freedom to choose the most appropriate design. The internal

specification builds upon the external specification. For example, the

external specification defines the stimuli that the software will act upon

and the responses produced. The internal specification defines the re-

sponses in terms of the stimuli history. The use of stimuli and re-

sponses avoids any commitment to a particular implementation thereby

allowing the designers greater freedom.

The expected usage profile defines the expected use of the

population of all executions in the same proportion that they will be

generated when the system is in use. The usage model involves the

definition of the usage states and estimating the transition probabilities

between usage states.

• Development

The development team is responsible for designing and implementing

the software. There may be more than one development team available

and this allows parallel development to take place. The specification is

decomposed into small executable increments. Each increment is then

designed, implemented, and verified. The increment is tested by invok-

ing user commands for the software. The construction plan for the

software will detail the number of increments. The example below is

taken from [CoM:90] and shows that Team A is responsible for devel-

oping three increments and Team B is responsible for developing one

increment. The preparation of test scripts takes place in parallel to the

development, and the increments are then certified in parallel with de-

velopment. The developed increments are integrated and certified and

finally all of the increments are integrated are certified.

Team A Inc 1 Inc 2 Inc 3

Team B Inc 4

Test Scripts Inc 1 Inc 1,2 Inc 1,2,3 Inc 1,2,3,4

Certify Inc 1 Inc 1,2 Inc 1,2,3 Inc 1,2,3,4

Fig. 9.1. Construction Plan for Project

look and feel from the user’s viewpoint. It includes details on the sys-

software and guides the preparation of usage tests. The validity of

the software’s expected MTTF is dependent on tests being run from the

 182 Mathematical Approaches to Software Quality

The development team uses box structures, step wise refinement and

functional verification to design and develop the software. The devel-

opment process involves 3 key steps.

Step Description

1. Design each increment top down using box structure

technology that includes three views of the software

and verify the correctness of each view:

• Black Box

 Implementation independent view defines re-

sponses in terms of stimuli histories.

a. Define stimuli.

b. Define responses in terms of stimuli

 histories.

• State Box

 The state box is a data-driven view and includes

implementation details by modifying the black box to

represent responses in terms of current stimuli and the

state data that represents stimuli history.

a. Define state data to represent stimuli histo-

ries.

b. Modify black box to represent responses in

terms of stimuli and state data.

c. Verify state box.

• Clear Box

 The clear box is a process driven view and com-

pletes implementation details by modifying the state

box to represent responses in terms of the current

stimuli, state data, and the invocation of lower level

black boxes.

a. Invent (select) data abstractions to represent

state data (e.g., sets, queues, stacks).

b. Modify state box to represent responses in

terms of stimuli and lower level black boxes.

c. Verify the clear box.

2. Implement each increment by stepwise refinement of

clear boxes into executable code. There is a rigorous

stepwise refinement algorithm used in Cleanroom for

box structures.

 9. Cleanroom and Software Reliability 183

3. Verify that the code meets its specification using func-

tional verification. The proof must show that the rule

(program) correctly implements the function (specifi-

cation). The Cleanroom developers neither compile

nor test the program. Instead, mathematical proof

(functional verification) is employed. Testing is the

responsibility of the certification team.

 Table 9.6. Cleanroom Design and Development

• Certification

The certification team is responsible for certifying the software’s mean

time to failure (MTTF) through the application of statistical quality

control. The expected usage profile and the applicable parts of the ex-

ternal specification are employed by the certification team to develop

test cases for the increment just developed and the increments devel-

oped previously. This activity is performed in parallel with develop-

ment as it uses the specification, not the code. The certification team

compiles the increment and adds it to the other increments. The soft-

ware is certified as follows:

Step Description

1. It measures Tk the MTTF of the current version of

the software (version k) by executing random test

cases. The MTTF for versions 0 ... k-1 have pre-

viously been determined.

Each test result is compared to the expected result

and the cumulative time to failure is an estimate

of the MTTF. The failures are reported to devel-

opment, fixes made, and measurements repeated

for new versions of the software.

2. The reliability of the next version is estimated

using a certification model and the measured

MTTF for each version of the software. The

MTTF is predicted from the formula:

 MTTFk+1 = ABk+1

The data points T0,…Tk are fitted to an exponen-

tial curve relationship and the values A and B

determined. If the value of B is less than 1 then

the new version is worse than the previous one.

For reliability growth, the value of B should be

monotonically increasing.

 184 Mathematical Approaches to Software Quality

3. Once the team has estimated the MTTF for the

next version, the team decides whether to:

• Correct failures and continue to certify.

• Stop certification as desired reliability

 reached.

• Stop certification and redesign the software

 (the failure rate is too high).

 Table 9.7. Cleanroom Certification of Software Reliability

9.3 Statistical Techniques

Probability and statistics were discussed in Chapter 2. The probability of an

event occurring is a mathematical indication of the likelihood of the event occur-

ring and the mathematical probability of an event is between 0 and 1. A prob-

ability of 0 indicates that the event cannot occur, whereas a probability of 1

indicates that the event is guaranteed to occur. A probability value greater than

0.5 indicates that the event is more likely to occur than not to occur.

A sample space is the set of all possible outcomes of an experiment and

an event E is a subset of the sample space. The probability of the union of dis-

joint events is the sum of their individual probabilities: i.e.,

P(∪ n
i=1Ei)= Σn

i=1P(Ei).

The probability of the union of two events (not necessarily disjoint) is given by:

P(E∪F) = P(E) + P(F) - P(EF).

The probability of an event E not occurring is denoted by P(Ec) and is given by :

P(Ec) = 1 – P(E).

The probability of an event E occurring given that an event F has occurred is

termed conditional probability (denoted by P(E|F)) and is given by:

P(E|F) = P(EF)

 P(F)

Bayes formula enables the probability of an event E to be determined

by a weighted average of the conditional probability of E given that the event F

has occurred and the conditional probability of E given that the event F has not

occurred: i.e.,

P(E) = P(E|F)P(F) + P(E|F c)P(Fc).

 9. Cleanroom and Software Reliability 185

Two events E and F are independent if knowledge that F has occurred

does not change the probability that E has occurred. Two events E and F are

independent if:

P(EF) = P(E)P(F).

A good account of probability and statistics is in [Ros:87]. Probability

theory has been applied to develop software reliability predictors of the MTTF

or the MTBF. Statistical testing is employed extensively in engineering and has

been successful in predicting the reliability of hardware. In many situations it is

infeasible to test all items in a population so statistical sampling techniques are

employed, and the quality of the population is predicted from the quality of the

sample. This technique is highly effective in manufacturing environments where

variations in the manufacturing process lead to defects in the products. The ap-

proach is to take a sample from the batch, which is then used to make judgments

as to whether the quality of the batch is acceptable.

 Software is different from manufacturing in that the defects are not

due to the variations in processes but are due to the design of the software prod-

uct itself. The software population to be sampled consists of all possible execu-

tions of the software. This population is infinite and therefore exhaustive testing

is impossible. Statistical testing is used to make inferences on the future per-

formance of the software. Cleanroom usage testing requires that the expected

usage profile of the system be determined. The population of all possible usages

is then sampled in accordance with the expected usage profile. The tests are

drawn at random from the population of all possible usages in accordance with

the expected usage profile.

Test cases are generated by traversing the model from the start state to

the end state, and then randomly selecting inputs to be included in the test case.

Cleanroom testing based on the usage models produces statistically valid infer-

ences about expected operational performance (including MTTF) of a given

version of the software [Pro:99].

9.4 Software Reliability

Software has become increasingly important for society, and professional soft-

ware companies aspire to develop high-quality and reliable software. Many

companies desire a mechanism to predict the reliability of their software prior to

its deployment and operational use, and this has led to interest in the reliability

predictor models that provide an approximate estimate of the reliability of the

software. However, accurate predictors of reliability are hard to obtain and there

is a need for further research to develop better software reliability models.

 186 Mathematical Approaches to Software Quality

DEFINITION (SOFTWARE RELIABILITY)

Software reliability is defined as the probability that the program works without

failure for a specified length of time and is a statement on the future behaviour

of the software. It is generally expressed in terms of the MTTF or the MTBF.

For programs that are only intermittently used, reliability is best defined as the

probability that the program works when required.

The reliability of the software is related to the inputs that are entered by

the users. Let If represent the fault set of inputs (i.e., if ∈If if and only if the input

of if by the user leads to failure). The randomness of the time to software failure

is due to the unpredictability in the selection of an input if ∈If. The way in which

the user actually uses the software will impact upon the reliability of the soft-

ware. Software reliability requires knowledge of probability and statistics.

Why Do We Need Software Reliability Models?

The release of an unreliable software product at best causes inconvenience to
customers and at worst can result in damage to property or injury to a third

party. Consequently, companies need a mechanism to judge the fitness for use of

the software product prior to its release and use. The approach taken by most
mature companies is to identify a set of objective criteria to be satisfied prior to

release. The criteria typically include that all testing has been performed, all

tests have passed, all known defects have been corrected, etc. The satisfaction of
the criteria provides a degree of confidence that the software has the desired

quality and is safe and fit for use. However, the fact that criteria have been satis-

fied indicates that certain results are true of the software at present or in the past;
it may provide no prediction or indication of the future behavior of the software

(unless some form of statistical usage testing and reliability prediction is in-
cluded as part of the criteria). The software reliability models are an attempt to

predict the future reliability of the software and to thereby assist the project

manager in deciding on whether the software is fit for release.

What Is the Relationship between Defects and Failures?

The relationship between the defect density of a system and failure needs further

investigation. A defect may not result in a failure as most software defects are

benign. In fact, most observed failures arise from a small proportion of the exist-

ing defects. This was demonstrated by research carried out at IBM by Adams

[Ada:84] in 1984 on a study of the relationship between defects and failures.

The research was based on an analysis of nine large products, and it studied the

relationship between detected defects and their manifestations as failures. The

results indicate that over 33% of the defects led to an observed failure with

MTTF greater than 5000 years; whereas less than 2% of defects led to an ob-

served failure with a MTTF of less than fifty years. Consequently, as a small

proportion of defects often give rise to almost all of the observed failures, it is

important to identify these as they are the defects that will eventually exhibit

themselves as failures to a significant number of users.

Caper Jones [Sta:92] suggests a close relationship between defect den-

sity and failures and provides a table of defect densities and the corresponding

MTTF. However, the implications of the IBM research (if it is true in general)

suggest that it is naive to associate total defects and defect density with software

reliability, and that the defect count is a poor predictor of operational reliability.

Further, an emphasis on removing a large number of defects from the software is

not sufficient in itself to achieve high reliability. The Adams study suggests that

it is important to identify and remove the small proportion (2%) of defects with

a MTTF of less than fifty years as these will directly impact the observed soft-

unacceptable for defects that may cause major financial loss or injury or loss of

life to be allowed to remain in the software. Reliability is complementary to

defect density rather than directly related to it.

The study by Adams therefore suggests that care has to be taken with

reliability growth models. Clearly, there is no growth in reliability unless the

corrected defect (assuming that the defect has been corrected perfectly with no

negative impact on the existing software) is a defect that is likely to manifest

itself as a failure. Most existing software reliability growth models assume that

all remaining defects in the software have an equal probability of failure, and

that the perfect correction of a defect leads to an increase in software reliability.

The evidence suggests that this premise, on which many of the software reliabil-

ity growth models are based, is false.

Are All Failures the Same?

Failures vary in their severity and on their impact on the user, and most mature

organizations employ a classification scheme that rates the severity of the fail-

ure. Many failures are cosmetic and have minimal impact on the system; how-

ever, some failures are severe and have a serious adverse impact on the

performance of the system. These service-affecting failures require attention as

the severity of the problem is such that the customer will be severely financially

affected by the failure and may suffer major loss of business (e.g., as happens

during a telecommunications outage).

This has led to service level agreements between customers and soft-

ware companies that guarantee a response to the failures within a stated time

period (depending on the severity of the failure). Most service level agreements

have built-in penalty clauses that stipulate the compensation that the customer

will receive if the customer support does not meet the standards agreed to in the

service level agreement.

ware reliability. However, the impact of all defects must be considered, as it is

 9. Cleanroom and Software Reliability 187

 188 Mathematical Approaches to Software Quality

What Is the Relationship between Testing and Reliability?

Modern software testing is described in [ORg:02] and the reliability of the soft-

ware is related to the effectiveness of the software testing. Good testing requires

good planning; having the appropriate test resources available; a comprehensive

suite of test cases to cover the requirements specification; a mechanism to com-

municate failures to software developers and to track the status of changes made

to correct a defect; a mechanism (e.g., defect testing and regression testing) to

verify that corrections to failures are properly made and have no adverse impact

on the software. Most mature companies plan for testing early in the software

development lifecycle and the type of testing performed includes functional,

system, performance, and usability testing. Regression testing is employed to

verify that the integrity of the system is maintained following the correction of a

defect. It aims to verify that the new version of the software is similar in func-

tionality to the previous version. This approach of identifying and correcting

defects should therefore (in theory) lead to a growth in reliability of the software

and thereby increased confidence in the fitness for use of the software. However,

care is needed before drawing this conclusion (as discussed earlier) as the identi-

fied defects may be in parts of the software that are infrequently used.

The Cleanroom approach employs statistical usage testing rather than

coverage testing and applies statistical quality control to certify the MTTF of the

software. The statistical usage testing involves executing tests chosen from the

of expected use. This requires an understanding of expected usage of the soft-

execution failure as well as a frequent execution failure; however, what is re-

quired is to find failures that occur on frequently used parts of the system. The

Cleanroom approach (as distinct from the defect count approaches) offers a

meaningful approach to software reliability.

 Fenton [Fen:00] has investigated the relationship between pre- and post

release defects. His results suggest that modules which are the most defect prone

empirical studies are needed to see whether these results are generally true.2

How Are the Old and New Versions of Software Related?

Software failures that are identified are corrected in the new version of the soft-

ware. The precise relationship between the new version of the software and the

previous version needs to be considered. The different views include:

2 My experience is that the maturity of the test group and the test practices employed need to be

taken into account before making a judgment on this. A software module that is not error prone pre

release and is error prone post release may have been tested inadequately by the test group.

population of all possible uses of the software in accordance with the probability

pre release are among the least defect prone post release and vice versa. Further

ware and what it is intended to do. Conventional testing is as likely to find a rare

 9. Cleanroom and Software Reliability 189

Similarities and Differences between New/Old Version

• The new version of the software is identical to the previous

version except that the identified defects have been corrected.

• The new version of the software is identical to the previous

version except that the identified defects have been corrected

but there may be some new defects introduced by developers

during the fix process.

• No assumptions can be made about the behavior of the new

version of the software until further data are obtained.3

Table 9.8. New and Old Version of Software

Many of the existing software reliability models assume reliability

growth: i.e., the new version is assumed to be more reliable than the previous

version, as several identified defects have been corrected. It is essential that a

new version be subject to rigorous regression testing to have confidence that its

behavior is similar to the previous version, and that no new defects have been

introduced that would degrade the reliability of the software. In the absence of

comprehensive regression testing, no assumptions should be made between the

relationship of the new version of the software to the previous version.

The safety critical industry (e.g., the nuclear power industry) takes the

conservative viewpoint that any change to a program creates a new program.

The new program is therefore required to demonstrate its reliability again. That

is, data need to be gathered on the new program and no assumptions can be

made about its reliability until the studies are complete.

What Reliability Models are Currently Used?

There are many well-known predictor models employed (with varying degrees
of success), and a description and critical examination of some of these is avail-

able in [BeM:86]. Some of these are not reliability models according to the strict

definition of reliability that was discussed earlier, and several of them just com-
pute defect counts rather than providing an estimate of software reliability in

terms of MTTF. However, the objective here is to describe a selection of what is

currently employed in the literature. The fact that there is such a wide collection
of models suggests that there is no one model at this time that serves the needs

of the software engineering community.

3 It is essential to perform regression testing to provide confidence that the new version of the soft-

ware maintains the integrity of the software.

 190 Mathematical Approaches to Software Quality

Model Description Comments

Jelinski /

Moranda

Model

The failure rate is a Poisson process and is

proportional to the current defect content of

program. The initial defect count is N; the

initial failure rate is Nϕ; it decreases to (N-

1) ϕ after the first fault is detected and

eliminated, and so on. The constant ϕ is

termed the proportionality constant.

Assumes defects cor-

rected perfectly and

no new defects are

introduced.

Assumes each fault

contributes the same

amount to failure rate.

Littlewood/

Verrall

Model

Successive execution time between failure

independent exponentially distributed ran-

dom variables. Software failures are the

result of the particular inputs and faults

introduced from the correction of defects.

Does not assume per-

fect correction of

defects.

Musa Exe-

cution Time

Model

Refinement of Jelinski/Moranda Model.

Fault correction rate proportional to rather

than equal to the failure rate.

Assumes each defect

contributes same

amount to overall

failure rate.

Seeding and

Tagging

This is analogous to estimating the fish

population of a lake. One approach (Mills)

is to introduce a known number of defects

into a software program and to monitor the

proportion of inserted defects identified

during testing.

Another approach (Hyman) is to regard the

defects found by one tester as tagged and

then to determine the proportion of tagged

defects found by a second independent

tester.

Provides an estimate

of the total number of

defects in the soft-

ware. Does not enable

reliability to be de-

termined.

Assumes all faults are

equally likely to be

found. Assumes the

introduced faults are

representative of ex-

isting.

Generalized

Poisson

Model

Number of failures observed in ith time

interval τi has a Poisson distribution with

mean

φ(N-Mi-1) τi
α where N is the initial number

of faults; Mi-1 is the total number of faults

removed up to the end of the (i-1)th time

interval; φ is the proportionality constant.

Assumes faults re-

moved perfectly at

end of time interval.

Time Series

Analysis

This is a technique to analyze variable data

over time. It allows data to be analyzed

without any assumptions about the failure

process.

 Table 9.9. Software Reliability Models

 9. Cleanroom and Software Reliability 191

 The existing reliability models in the literature may be classified into the

following:4

• Size and Complexity Metrics

These are used to predict the number of defects that a system will reveal in

operation or testing. Many of these are regression based “data fitting” mod-

els and includes work by Halstead, Fenton, Kitchenham, and McCabe.

• Operational Usage Profile

These are used to predict failure rates based on the expected operational us-

age profile of the system. The approach taken is to look at the product and

test it. The number of failures encountered is determined and the reliability is

then predicted. The Cleanroom approach developed by Mills at IBM em-

ploys statistical usage testing to predict the MTTF.

• Quality of the Development Process

These are used to predict failure rates based on the maturity of the organiza-

tion or of the software development process. The CMM [Pau:93], and its

successor, the CMMI [CKS:03], are examples of maturity models. Compa-

nies that have been assessed at level three or higher are expected to deliver

high quality software.5

What Is a Good Software Reliability Model?

Models are simplifications of the underlying reality and enable predictions about

future behavior to be made. A model is a foundation stone from which the the-
ory is built, and from which explanations and justification of behavior are made.

The model is in effect the starting point and it is not envisaged that we should

justify the model itself. However, if the model explains the known behavior of
the system, it is thus deemed adequate and a suitable representation.

The adequacy of the model is thus a key concern, and in normal science

[Kuh:70] inadequate models are replaced with more accurate models. The ade-
quacy of the model is judged from model exploration, and empirical analysis is

used to determine if the predictions of the model are close to the actual mani-

fested behavior. If empirical evidence supports the model, then the model is
judged to be a good representation of the underlying reality. However, if serious

inadequacies are identified with the model, then the theory and its foundations
collapse like a house of cards. In some cases it may be possible to amend the

model to address its inadequacies. In practice, models are modified or replaced

over time, as further facts and observations lead to aberrations that cannot be
explained by the model in its current form.

4 Some of these are not software reliability models according to the definition of software reliability

as the MTTF.

5 I have seen instances where maturity of processes did not lead to higher quality software and on-

time projects. This included a project delivered by a CMM level 5 company in India.

 192 Mathematical Approaches to Software Quality

The physical world is dominated by mathematical models: e.g., models

of the weather system, that enable predictions of the weather to be made. The
extent to which the model explains the underlying physical behavior and allows

predictions of future behavior to be made will determine its acceptability as a

representation of the physical world. Models are usually good at explaining
some aspects of the world and weak at explaining other aspects. There are many

examples in science of the replacement of one theory by a newer one: e.g., the

replacement of the Ptolemaic model of the universe by the Copernican model or
the replacement of Newtonian physics by Einstein’s theories on relativity.

There are many well-known software reliability models but their ability

to predict failure accurately has had limited success. Many prediction models

tend to model only part of the underlying problem. A good software reliability

model will have the following characteristics:

Characteristics of Good Software Reliability Model

 • Good theoretical foundation

• Realistic assumptions

• Valid empirical support

• As simple as possible (Occam’s Razor)

 • Trustworthy and accurate

Table 9.10. Good Software Reliability Model

It is essential that the evidence for a proposed software reliability model is valid.

How Is a Software Reliability Model Evaluated?

The extent to which the software reliability model can be trusted depends on the

accuracy of its predictions and on its soundness. Empirical data will need to be
gathered to determine the extent to which the observations support the predic-

overly optimistic results is termed optimistic, whereas a model that gives overly

pessimistic results is termed pessimistic. Inaccuracy may be acceptable in the

early stages of prediction, provided that when the model is employed to predict
operational reliability, it is accurate. The assumptions inherent in the reliability

model need to be examined to determine whether they are realistic. Several

well-known software reliability models include some of the following question-
able assumptions:

• All defects are corrected perfectly.

• Defects are independent of one another.

• Failure rate decreases as defects are corrected.

• Each fault contributes the same amount to the failure rate.

The validity of the assumptions made will determine whether the model is

sound, useful, and trustworthy.

tions of the model. It may be acceptable to have a little inaccuracy in the pre-

dictions provided the predictions are close to the observations. A model that gives

 9. Cleanroom and Software Reliability 193

How Are Software and Hardware Reliability Related?

There are similarities and differences between hardware and software reliability.

Hardware failure is often due to a component wearing out due to its age, and in

most cases a hardware failure is permanent and requires replacement of a hard-
ware component. Most hardware components are expected to last for a certain

period of time, and the variation in the failure rate of a hardware component is

due to the manufacturing process and to the operating environment of the com-
ponent. Good hardware reliability predictors have been developed, and each

hardware component has an expected MTTF. The reliability of a product may be

determined from the reliability of the individual components of the product.

Software is different in that it does not physically wear out and instead

software failures are the result of particular inputs. There is no variation in

manufactured software as each copy is identical. Software is either correct or

incorrect, and software failures are due to design and implementation errors. The

software community has been ineffective in developing a sound predictor model

of software reliability. Several models have been discussed, but these contain

questionable assumptions that limit their usefulness as a predictor of software

reliability.

How Are Software Availability and Reliability Related?

Software availability is a measure of the down-time of the software during a

particular time period. The down-time refers to a period of time when the soft-

ware is unavailable for use and a goal of approximately five minutes downtime

per annum (known as five nines) is common in the telecommunications sector.

A company with a goal of five-nines availability aims to develop software that is

available for use 99.999% of the time in the year.

Software that satisfies strict availability constraints is usually reliable.

The downtime includes the time in rebooting a machine, upgrading to a new

version of software, planned and unplanned outages. It is theoretically possible

for software to be highly unreliable but yet satisfy the five-nines goal. Consider,

for example, software that fails consistently for 0.5 seconds every day. Then the

total failure time is 183 seconds or approximately 3 minutes. However, this sce-

nario is unlikely for most systems, and the satisfaction of strict availability con-

straints means that the software is highly reliable.

 Software that is highly reliable may satisfy poor availability con-

straints. Consider the upgrade of the version of software at a customer site to a

new version. Suppose the previous version had been highly reliable but that the

upgrade path is complex or poorly designed (e.g., taking two days). Then the

availability measure is very poor even though the product is highly reliable.

Consequently, care is required before drawing conclusions between software

reliability and software availability.

 194 Mathematical Approaches to Software Quality

Why Are There So Many Reliability Models?

The large collection of reliability models in the literature suggest that little pro-

gress has been made in the definition of a sound reliability model. It suggests

that there is little consensus among the software reliability community as to

what is the best model among the plethora of existing models. There is no one

model at this time that is able to meet the needs of software practitioners, and

further research on a more accurate software reliability predictor is required.

Many of the existing models lack a solid theoretical foundation and

adopt a graph fitting approach to prediction. However, what is required is a

sound software reliability model with reasonable assumptions that gives accu-

rate predictions.

Operational Profile and Software Reliability

The way in which the system is used will impact the quality and reliability as

perceived by the individual user. Failures will manifest themselves on certain

input sequences only, and as users generally employ different input sequences,

so each user will have a different perception of the reliability of the software.

The knowledge of the way that the software will be used allows the software

testing to focus on verifying that the software works correctly for the normal

everyday tasks carried out by users.

 Therefore, it is important that the operational profile of users be deter-

mined to allow effective testing of the software to take place. The operational

environment may not be stable as users may potentially change their behavior

over time. The collection of operational data involves identifying the operations

to be performed and the probability of that operation being performed. The

Cleanroom approach [CoM:90] applies statistical techniques to enable a soft-

ware reliability measure to be calculated based upon the expected usage of the

software.

How Can Software Design Improve Reliability?

Good design is essential in building a high-quality and reliable product. Engi-

neers design bridges prior to their construction and their approach is to first

specify the requirements and then to produce a design that will satisfy the re-

quirements. It is important to engineer software and to precisely state the re-

quirements and then to produce a design that will satisfy the requirements. The

objective is to build quality and reliability into the software by using sound de-

sign methods and tools.

 Parnas and his research group adopts a classical engineering approach

to improve design. This involves the use of mathematical documents that allow

the software requirements to be expressed precisely using tabular expressions.

The approach followed by Parnas for specification and design includes the ideas

of modularity, information hiding, and the 4-variable model.

 9. Cleanroom and Software Reliability 195

Other groups in industry are improving their software design by using

the Unified Modeling Language (UML) for requirements and design.

How Can Software Development Tools Improve Reliability?

Various methods and tools may be employed to improve software reliability. A

good software development infrastructure is essential and needs to include tools

for configuration management, code coverage, test automation, etc. Automated
testing tools for regression testing are invaluable as they allow the new version

of the software to be efficiently tested and to provide confidence that the quality

of the new version is superior to the previous version.
Various research tools are being developed by academic groups, for ex-

ample, tools to support tabular expressions to aid the specification and design of

software, and also to assist inspections and testing. The objective is to develop
methods and tools that will provide tangible improvement in software reliability

and enhanced confidence in the correctness of the software.

What Can Be Learned from the Reliability of a Project?

It is unfortunate that many projects often repeat the same mistakes of previous

projects. The defect and failure profile of the project offers the project team the

potential to learn lessons from the project and to do things differently on the

next project. The phase of origin of the failure (e.g., requirements, design, cod-

ing, test, postrelease, etc.); the cause of nondetection of the failure during in-

spections and testing; the modules in which the failures occurred; and so forth

need to be analyzed and actions identified to prevent a reoccurrence of the de-

fects. This should lead to practical improvement in the next project (e.g., im-

provements to the design methodology, inspections and testing, etc). It is as

important to learn lessons from failure as it is to repeat current success.

9.5 Summary

Software has become increasingly important for society and professional soft-

ware companies aspire to develop high-quality and reliable software. This has

led to an interest in methodologies that have been demonstrated to yield superior

results in achieving quality software. Cleanroom is one such approach and em-

ploys mathematical and statistical techniques to produce high-quality software.

The approach was developed by Harlan Mills and others and has been used suc-

cessfully at IBM. The approach builds quality into the software and uses

mathematical techniques to demonstrate that the program is correct with respect

software based on the expected usage profile of the software.

Software reliability is the probability that the program works without

failure for a specified length of time, and it is a statement on the future behavoiur

to its specification. Cleanroom also provides certification of the quality of the

 196 Mathematical Approaches to Software Quality

ure (MTTF) or the mean time between failure (MTBF), and the software reli-

ability measurements are an attempt to predict the future reliability of the

software and to thereby allow an objective judgment of the fitness for use of the

software.

There are many reliability models in the literature and the question as

to which is the best model or how to evaluate the effectiveness of the model

arises. A good model will have good theoretical foundations and will give useful

predictions of the reliability of the software.

of the software. It is generally expressed in terms of the mean time to fail-

10

Unified Modeling Language

10.1 Introduction

The unified modeling language (UML) is a visual modeling language for soft-

ware systems. It was developed by Jim Rumbaugh, Grady Booch, and Ivar Ja-

cobson [Jac:99a] as a notation for modeling object-oriented systems. It provides
a visual means of specifying, constructing, and documenting the object-oriented

system, and facilitates the understanding of the architecture of the system and

1

2

An engineer will design a house prior to its construction and the blue-

practical details of electricity and plumbing. These plans form the basis for the

estimates of the time and materials required to construct the house. UML is use-
ful in modeling the system, and a model simplifies the underlying reality. Mod-

els provide a better understanding of the system to be developed, and a UML

model allows the system to be visualized prior to implementation. Large com-
plex systems are difficult to understand in their entirety, and the models simplify

the complexity.
Models simplify the reality, but it is important to ensure that the simpli-

fication does not exclude any important details. The chosen model affects the

view of the system, and different roles require different viewpoints of the pro-
posed system. A database developer will focus on entity-relationship models,

whereas a systems analyst will focus on algorithmic models. An object-oriented

developer will focus on classes and interactions of classes. Often, there is a need

1 The Rational Corporation is now part of IBM.

2 UML is the most widely used formal method in industry. It has good tool support.

uage was strongly influenced by three methods: the Object Modeling Technique

(OMT) developed by Rumbaught; the Booch method; and the Object-Oriented

Software Engineering (OOSE) developed by Jacobson. It unifies and improves

it is not a mathematical approach to software quality, it is a formal approach

to modeling software systems that has become popular, and it is therefore

included in this book.

the management of the complexity of a large system. The unified modeling lang-

upon these methods and was developed at the Rational Corporation. Although,

prints will contain details of the plan of each room in the house as well as the

 198 Mathematical Approaches to Software Quality

to be able to view the system at different levels of detail. No single model in

itself is sufficient for this, and a small set of interrelated models is employed.
For example, in the plans for a house there are floor plans, electrical plans, and

plumping plans.

UML is applied to formally model the system and it allows the same
information to be presented in many different ways and at different levels of

detail. The requirements of the system are expressed in terms of use cases; the

design view captures the problem space and solution space; the process view
models the systems processes; the implementation view addresses the imple-

mentation of the system; and a deployment view. There are several diagrams

providing different viewpoints of the system. The UML diagrams provide the
blueprint of software and are discussed later in this chapter.

10.2 Overview of UML

UML is a very expressive graphical modeling language for visualizing, specify-

ing, constructing, and documenting a software system. It provides several views
of the software’s architecture that are needed to develop and deploy systems.

There is a clearly defined syntax and semantics3 for every building block of the
graphical notation of UML. Each stakeholder (e.g., project manager, developers,

testers) has a different perspective and looks at the system in different ways at

different times over the project’s life. UML is a way to model the software sys-
tem before implementing it in a programming language, and the explicit model

of the system facilitates communication.

A UML specification involves building precise, complete, and unambi-
guous models. The UML models may be employed to generate code in a pro-

gramming language such as Java or C++. The reverse is also possible and it is

therefore possible to work in the graphical notation of UML or the textual nota-
tion of a programming language. Tools are employed to keep both views consis-

tent. UML expresses things that are best expressed graphically, whereas a

programming language expresses things that are best expressed textually. UML
may be employed to document the software system, and it has been employed in

many domains including the banking sector, defense, and telecommunications.
The application of UML requires an understanding of the basic build-

ing blocks of UML, the rules for combining the building blocks, and the com-

mon mechanisms that apply throughout the language. There are three kinds of
building blocks employed namely things, relationships and diagrams.

Things are the object-oriented building blocks of the UML. They in-

clude structural things, behavioral things, grouping things, and annotational
things. Structural things are the nouns of the UML models; behavioral things

are the dynamic parts of the UML models and represent behavior over time;

3 Parnas has joked that UML would be better described as the ‘Undefined Modeling Language’.

However, while I accept that there is work to do on the UML semantics it is nevertheless the most

acceptable formal approach to software development in industry and is likely to remain so.

 10. Unified Modeling Language 199

grouping things are the organization parts of UML; and annotation things are the

explanatory parts of UML. Things, relationships, and diagrams are all described
graphically and are described in detail in [Jac:99a].

Thing Kind Description
Structural Class A class is a description of a set of objects that

share the same attributes and operations.

Interface An interface is a collection of operations that

specify a service of a class or component. It de-

scribes externally visible behavior of the element.

It is a specification rather than an implementa-

tion.

Collaboration A collaboration has structural and behavioral

dimensions. It defines an interaction and includes

roles.

Use case A use case is a description of a set of sequences

of actions that a system performs. It yields a re-

sult to a particular actor.

Active class This is similar to a class except that its objects

represent elements whose behaviour is concurrent

with other elements.

Component A component is a physical and replaceable part of

a system that conforms to and realizes a set of

interfaces.

Node A node is a physical element that exists at run

time and represents a computational resource

with processing capability and memory.

Behavioural Interaction This comprises a set of messages exchanged

among a set of objects.

State cachine A state machine is a behavior that specifies the

sequences of states that an object or an interaction

goes through during its lifetime in response to

events.

Grouping Packages These are the organization parts of UML models.

A package organizes elements into groups and is

a way to organize a UML model.

Annotation These are the explanatory parts of UML.

Table 10.1. Classification of UML Things

There are four kinds of relationship in UML namely dependency, association,

generalization and realization.

Dependency is a semantic relationship between two things in which a
change to one thing affects the other thing (dependent thing). Dependencies

show one thing using another. An association is a structural relationship that

describes a set of links (connections among objects). Aggregation is an associa-
tion that represents a structural relationship between a whole and its parts. A

generalization is a specialization/generalization relationship in which the objects
of the specialized element (child) are substituted for objects of the generalized

element (the parent). The child shares the structure and behavior of the parent.

 200 Mathematical Approaches to Software Quality

Realization is a semantic relationship between classifiers, where one classifier

specifies a contract that another classifier guarantees to carry out. They are en-
countered in interfaces (classes and components that realize them) and use cases

(collaborations that realize them).

The UML diagrams provide a graphical visualization of the system
from different viewpoints. A diagram may contain any combination of things

and relationships. There are several UML diagrams employed and they include:

Diagram Description
Class This shows a set of classes, interfaces, and collabora-

tions and their relationships. They address the static

design view of a system.

Object This shows a set of objects and their relationships.

They represent the static design view of the system

but from the perspective of real cases.

Use Case These show a set of use cases and actors and their

relationships. They are important in modeling the

behavior of a system.

Sequence These are interaction diagrams that show an interac-

tion of a set of objects and their relationships includ-

ing messages dispatched between them. A sequence

diagram emphasizes the time ordering of messages.

Collaboration A collaboration diagram is an interaction diagram

that emphasizes the structural organization of objects

that send and receive messages.

Statechart This shows a state machine consisting of states, tran-

sitions, events, and activities. It addresses the dy-

namic view of a system and is important in modeling

the behavior of an interface or class.

Activity This is a kind of statechart diagram that shows the

flow from activity to activity of a system. It addresses

the dynamic view of a system and is important in

modeling the function and flow of control among

objects.

Component This show the organizations and dependencies among

components. It addresses the static implementation

view of a system.

Deployment This shows the configuration of run time processing

nodes and the components that live on them.

 Table 10.2. UML Diagrams

UML is often used as part of the unified software development process.

The unified process is described in detail in [Jac:99b]. It is:

Use-case driven

Architecture centric

Iterative and incremental

 10. Unified Modeling Language 201

It includes cycles, phases, workflows, risk mitigation, quality control,

project management, and configuration control. Software projects may be very
complex, and there are risks that requirements may be missed in the process, or

that the interpretation of a requirement may differ between the customer and

developer. Requirements are gathered as use cases in the unified process, and
the use cases describe the functional requirements from the point of view of the

users of the system.

The use case model describes what the system will do at a high-level,
and there is user focus in defining the scope the project. Use cases drive the

development process and the developers create a series of design and implemen-

tation models that realize the use cases. The developers review each successive
model for conformance to the use-case model. The testers test the implementa-

tion to ensure that the implementation model correctly implements the use cases.

10.3 UML Diagrams

The UML diagrams are useful for visualizing, specifying, constructing, and
documenting the software architecture. This section provides a more detailed

account of the diagrams, and the first diagram considered is the class diagram.

Classes are the most important building block of any object-oriented system, and
a class is a set of objects that share the same attributes, operations, relationships,

and semantics [Jac:99a].
Class diagrams are a superset of the entity-relationship diagrams that

are used for logical database design. Classes may represent software things and

hardware things. In a house things like walls, doors, and windows are all classes,
whereas individual doors and windows are objects. A class represents a set of

objects rather than an individual object. UML provides a graphical representa-

tion of a class.
Automated bank teller machines (ATMs) include two key classes: cus-

tomers and accounts. The class definition includes the data structure for custom-

ers and accounts and also the operations on customers and accounts. These
include operations to add or remove a customer, and operations to debit or credit

an account or to transfer from one account to another. There are several in-

stances of customers and accounts, and these are the actual customers of the
bank and their accounts.

Customer Account

Name: String
Address: String

Add()
Remove()

Debit()
Credit()

CheckBal()
Transfer()

Table 10.3. Simple Class Diagram

Balance: Real
Type: String

 202 Mathematical Approaches to Software Quality

Every class has a name (e.g., Customer and Account) to distinguish it

from other classes. There will generally be several objects associated with the
class. The class diagram describes the name of the class, its attributes, and its

operations. An attribute represents some property of the class that is shared by

all objects; e.g., the attributes of the class Customer are name and address. At-
tributes are listed below the class name in the UML diagram. The operations are

listed below the attributes. The operations may be applied to any object in the

class. The responsibilities of a class may also be included in the definition. The
concept of class and objects are taken from object-oriented design.

Class diagrams typically include various relationships between classes.

In practice, very few classes stand alone, and most collaborate with others in
various ways. The relationship between classes needs to be considered and these

provide different ways of combining classes to form new classes. The relation-
ships include dependencies (a change to one thing affects the dependent thing);

generalizations (these link generalized classes to their specializations in a sub-

class/superclass relationship); and associations (these represent structural rela-
tionships among objects).

A dependency is a relationship that states that a change in the specifica-

tion of one thing affects the dependent thing. It is indicated by a dashed directed
line (---->). Dependencies show one thing using another. Generalizations allow a

child class to be created from one or more parent classes (single or multiple in-

heritance). A class that has no parents is termed a base class. This is illustrated
by the example in [Jac:99a] in which the base class is Shape and there are three

children of the base class namely Rectangle, Circle and Polygon. There is one

child of Rectangle namely Square. Generalization is indicated by a solid directed
line that points to the parent (—). Association is a structural relationship that

specifies that objects of one thing are connected to objects of another thing.

The next diagram considered is the object diagram which shows a set
of objects and their relationships at a point of time. The object diagram is related

to the class diagram in that the object is an instance of the class. The ATM ex-

ample above had two classes (customers and accounts) and the objects of these
classes are the actual customers and their corresponding accounts. Each cus-

tomer may have several accounts. The names and addresses of the customers are
detailed as well as the corresponding balance in the customer’s accounts. There

is one instance of the customer class below and two instances of the account

class:

Customer (J.Bloggs)

Name = “J.Bloggs”

Address = “Mallow”

Account (J.Bloggs

personal account)

Account (J.Bloggs

personal account)

Type = “Saving” Type = “Current”

Fig. 10.1. Simple Object Diagram

Balance = 1,000 Balance = 500

 10. Unified Modeling Language 203

An object has a state and the value of its state is given at a particular

moment of time. Operations on the object typically change its state with the

exceptions of operations that query the state. Object diagrams give a snapshot of

the system at a particular moment of time. An object diagram contains objects

and links to other objects.

The next diagram considered is the use-case diagram. Use cases dia-

grams model the dynamic aspects of the system and are important in visualizing

and specifying the behavior of the system. A use-case diagram shows a set of

use cases and actors and their relationships. They describe scenarios or se-

quences of actions for the system from the user’s viewpoint (actor), and show

how the actor interacts with the system. An actor represents the set of roles that

a user can play while interacting with the system, and an actor may be human or

an automated system. Actors are connected to use cases by association and they

may communicate by sending and receiving messages.

A use-case diagram shows a set of use cases and each use case repre-

sents a functional requirement. Use cases are employed to model the visible ser-

vices that the system provides within the context of its environment and for

specifying the requirements of the system as a black box. Each use case carries

out some work that is of value to the actor, and the behavior of the use case is

described by the flow of events in text. The description includes the main flow

of events for the use case and the exceptional flow of events. These flows may

also be represented graphically. There may also be alternate flows as well as the

main flow of the use case. Each sequence is termed a scenario and a scenario is

one instance of a use case.

Use cases provide a way for the end users and developers to share a

common understanding of the system. They may be applied to all or part of the

system (subsystem), and the use cases are used as the basis for development and

testing. A use case is represented graphically by an ellipse. The benefits of use

cases include:

• Enables domain experts, developers, testers, and end users to share a

common understanding.

• Models the requirements of the system (specifies what the system

should do).

• Models the context of a system (identifying actors and their roles).

• Serves as a basis for development and testing.

A simple example is the definition of the use cases for an ATM appli-

cation. The typical user operations at an ATM machine include the balance in-

quiry operation, cash withdrawal, and the transfer of funds from one account to
another. The actors for the system are identified, and for the ATM example the

actors “customer” and “admin” are employed. These actors have different needs

and expectations of the system.
The behavior from the user’s viewpoint is described in the following

diagram and the use-cases include “withdraw cash,” “check balance,” “transfer,”

 204 Mathematical Approaches to Software Quality

and “maintain/reports.” The use case view of the system includes the actors who

are performing the sequence of actions.

 Fig. 10.2. Use-Case Diagram of ATM Machine

The next UML diagram considered is the sequence diagram which

models the dynamic aspects of the system and shows the interaction between

objects/classes in the system for each use case. The interactions model the flow

of control that characterizes the behavior of the system, and a sequence diagram

emphasizes the time ordering of messages. The objects that play a role in the

interaction are identified. The interactions may include messages that are dis-

patched from object to object, and messages are ordered in sequence by time.

The example as adapted from [CSE:00] considers the sequences of interactions

between objects for the “check balance” use case. This sequence diagram is spe-

cific to the case of a valid inquiry, and there are generally sequence diagrams to

handle the exception cases also.

The behavior of the “check balance” operation is evident from the dia-

gram. The customer inserts the card into the ATM machine and the PIN number

is requested by the ATM machine. The customer then enters the number and the

ATM machine contacts the bank for verification of the number. The bank con-

firms the validity of the number and the customer then selects the balance en-

quiry. The ATM contacts the bank to request the balance of the particular

account and the bank sends the details to the ATM machine. The balance is dis-

played on the screen of the ATM machine. The customer then withdraws the

card. The actual sequence of interactions is evident from the sequence diagram.

Withdraw
Cash

Balance

Transfer

Bank

Maintain Reports

Admin

Customer

 10. Unified Modeling Language 205

 Fig. 10.3. UML Sequence Diagram

The example above has four objects (Customer, ATM, Bank, and Ac-

count) and these are laid out from left to right at the top of the sequence dia-

gram. Collaboration diagrams are interaction diagrams that consist of objects

and their relationships. However, while sequence diagrams emphasize the time

ordering of messages, a collaboration diagram emphasizes the structural organi-

zation of the objects that send and receive messages. Sequence diagrams and

collaboration diagrams are semantically equivalent to one another and one can

be converted to the other without loss of information. Collaboration diagrams

are described in more detail in [Jac:99a].

The next UML diagram considered is the activity diagram which are

essentially charts showing the flow of control from one activity to another. They

are used to model the dynamic aspects of a system, and this involves modeling

the sequential and possibly concurrent steps in a computational process. They

are different from sequence diagrams in that they show the flow from activity to

activity, whereas sequence diagrams show the flow from object to object.

 Fig. 10.4. UML Activity Diagram

o k

End

Insert card

AT M BankCustomer Account

Request P IN

Insert PIN

Balance inquiry

Verify

Confirm ok

Get account

Get account

Return balance

Return balance

Display balance

Card inser ted

Request

Wait for PIN

Validate

Check

Display

Error

Display

 206 Mathematical Approaches to Software Quality

The final UML diagram discussed is state diagrams or state charts.

These show the dynamic behavior of a class and how different operations result

in a change of state. There is an initial state and a final state and the different

operations result in different states being entered and exited.

Fig. 10.5. UML State Diagram

There are several other UML diagrams including component and de-

ployment diagrams. The reader is referred to [Jac:99a].

10.4 Object Constraint Language

The object constraint language (OCL) is a specification language that allows a

precise way of expressing constraints on the UML models. OCL is a part of

UML, although it was originally developed by Jos Warmer at IBM as a business

modeling language. It was developed further by the Object Management Group

(OMG) as part of the development of UML.4 OCL is a pure expression lan-

guage: i.e., there are no side-effects as in imperative programming languages.

Expressions can be used in various places in a UML model including:

• specify the initial value of an attribute.

• specify the body of an operation.

• specify a condition

There are several types of OCL constraints including:

OCL Constraint Description

Invariant A condition that must always be true. An

invariants may be placed on an attribute in a

class and this has the affect of restricting the
value of the attribute. All instances of the

class are required to satisfy the invariant. An

4 I am aware of some groups in the United States that are using OCL to specify constraints. How-

ever, many other groups are employing natural language to specify constraints at this stage.

E r r o r

I n v a l i d

Welcome Validation

Insert Valid Withdraw

Process End

End

Display Return Card

Balance

Display

Card removed

 10. Unified Modeling Language 207

invariant is a predicate and is introduced

after the keyword inv.

Precondition A condition that must be true before the op-
eration is executed. A precondition is a

predicate and is introduced after the key-

word pre.

Postcondition A condition that must be true when the op-
eration has just completed execution. A

postcondition is a predicate and is intro-

duced after the keyword post.

Guard A condition that must be true before the state
transition occurs.

 Table 10.4. OCL Constraints

There are various tools available to support OCL and these include

OCL Compilers (or Checkers) that provide syntax and consistency checking of

the OCL constraints and the USE tool which may be employed to animate the

model.

10.5 Rational Unified Process

Software projects with a complex problem to solve need a well-structured proc-

ess to achieve its results. This section gives a brief introduction to the Unified

Development Software Process, and to some of its core workflows. The unified

process uses the visual modeling standard of UML and a full description of the

process is in [Jac:99b]. It is use case driven, architecture centric and iterative

and incremental.
The unified process includes cycles, phases, workflows, risk mitigation,

quality control, project management, and configuration control. Software pro-

jects may be very complex, and there are risks that requirements may be missed

in the process, or that the interpretation of a requirement may differ between the
customer and developer. Requirements are gathered as use cases in the unified

process, and the use cases describe the functional requirements from the point of
view of the user of the system. The use case model describes what the system

will do at a high level, and there is a user focus in defining the scope of the pro-

ject. Use cases drive the development process and the developers create a series
of design and implementation models that realize the use cases. The developers

review each successive model for conformance to the use-case model. The test-

ers test the implementation to ensure that the implementation model correctly
implements the use cases.

The software architecture concept embodies the most significant static

and dynamic aspects of the system. The architecture grows out of the use cases

and factors such as the platform that the software is to run on, deployment con-

siderations, legacy systems, and nonfunctional requirements.

 208 Mathematical Approaches to Software Quality

A commercial software product is a large undertaking that may involve

50 to 100 person-years. It may take a year or longer to complete and the work is
decomposed into smaller slices or mini-projects, where each mini-project is an

iteration that results in an increment.

Fig. 10.6. Rational Unified Process

Iterations refer to steps in the workflow, and an increment leads to the

growth of the product. The iterations are controlled in the unified process. Con-

trolled iteration reduces the cost risk to the expenditures on a single increment.

 Fig. 10.7. Phases and Workflows in Unified Process

If the developers need to repeat the iteration, the organization loses

only the misdirected effort of one iteration, rather than the entire product. There-

fore, the unified process is a way to reduce risk in software engineering.

Time

Disciplines

Business Modelling
Requirements

Analysis & Design

Implementation

Test

Deployment

Project Mgt.

Environment

Cfg. & Change Mgt.

Inception Elaboration
Phases

Phases

Iterations

Init E1 E2 C1 C2 C3 T1 T2

Construction Transition

Analysis and Design

Implementation

Test

Deployment

Evaluation

Planning

Requirements

 10. Unified Modeling Language 209

The waterfall software development model is well known and is used

frequently in practice. However, it has the disadvantage that the risk is greater

toward the end of the project, where it is costly to undo mistakes from earlier

phases. Iterative processes were developed in response to these waterfall char-

acteristics. With an iterative process, the waterfall steps are applied iteratively.

Instead of developing the whole system in one step, an increment (i.e., a subset

and so on. The earliest iterations address greatest risks. Each iteration produces

an executable release and includes integration and testing activities.

The unified process consists of four phases. These are inception, elabo-

ration, construction, and transition. Each phase consists of one or more itera-

tions, and the iteration consists of various workflows. The workflows may be

requirements, analysis, design, implementation, and test. Each phase terminates

in a milestone with one or more project deliverables.

The inception identifies and prioritizes the most important risks. The

phase is concerned with the initial project planning and cost estimation and ini-

tial work on the architecture and functional requirements for the product. The

elaboration phase specifies most of the use cases in detail and the system archi-

tecture is designed. The construction phase is concerned with building the prod-

uct. At the end of this phase, the product contains all of the use cases that

management and the customer agreed for the release. The system is ready for

transfer to the user community. The transition phase covers the period during

which the product moves into the customer site and includes activities such as

training customer personnel, providing help-line assistance, and correcting de-

fects found after delivery.

10.6 Tools for UML

There are many tools available for UML and the following is a selection of the

IBM/Rational tools:

UML Tool Description

Requisite Pro Requirements and use case management

tool. It provides requirements management
and traceability.

Rational Software

Modeler (RSM)

Visual modeling and design tool that is used

by systems architects/systems analysts to

communicate processes, flows, and designs.

Rational Software
Architect (RSA)

RSA is a tool that enables good architectures
to be created.

These are configuration management/change

control tools that are used to manage change

in the project.

 Table 10.5. Tools for UML

of the system functionality) is selected and developed, then another increment,

Clearcase/

Clearquest

 210 Mathematical Approaches to Software Quality

10.7 Summary

The unified modeling language is a visual modeling language for software sys-

tems, and it facilitates the understanding of the architecture of the system and
the management of the complexity of large systems. It was developed as a nota-

tion for modeling object-oriented systems, and it provides a visual means of

specifying, constructing, and documenting the object-oriented system.
 UML is applied to formally model the system and it allows the same in-

formation to be presented in many different ways and at different levels of de-

tail. The requirements of the system are expressed in the use-case view; the
design view captures the problem space and solution space; the process view

models the systems processes; the implementation view addresses the imple-

mentation of the system; and the deployment view.
There are several diagrams providing different viewpoints of the system

(e.g., use-case diagrams, class and object diagrams, activity diagrams, sequence

diagrams, state diagrams, etc.), and these provide the blueprint of the software.
Constraints may be placed on the UML models using a natural language such as

English or OCL.

The main advantages of UML are:

Advantages of UML

State of the art visual modeling language with a rich expres-

sive notation.

Study of the proposed system before implementation

Visualization of architecture design of the system.

Mechanism to manage complexity of a large system.

Visualization of system from different viewpoints. The differ-

ent UML diagrams provide a different view of the system.

Enhanced understanding of implications of user behavior.

Use cases allow a description of typical user behavior.

Use cases provide a mechanism to communicate the proposed

behavior of the software system, to describe what it will do,

and serves as the basis of development and testing.

Table 10.6. Advantages of UML

11

Technology Transfer

11.1 Introduction

Technology transfer is concerned with the practical exploitation of new technol-

ogy. The new technology is developed by an academic or industrial research

group, and the objective of technology transfer is to facilitate the use of the
technology in an industrial environment. The transfer of new technology and

leading edge methods to an industrial environment needs to take place in a con-

trolled manner. It cannot be assumed that a new technology or method will nec-
essarily suit an organization, and the initial focus is concerned with piloting the

new technology and measuring the benefits gained from its use. The pilot(s) will

provide insight into the effectiveness of the new technology as well as identify-
ing areas that require further improvement prior to the general deployment of the

technology throughout the company. Feedback from the pilot(s) is provided to

the research groups and further improvements and pilots take place as appropri-
ate. In some instances, it may be that commercial exploitation of the technology

is inappropriate. This may be due to immaturity of the technology, the fact that

the technology does not suit the culture of the company, or the fact that the
evaluation of the technology did not achieve the required criteria and is not ex-

pected to in the near future.
 A pilot of new technology is an experiment to determine the effective-

ness of the technology, and to enable an informed decision to be made on the

benefits of transferring the new technology throughout the company. The pilot is
generally limited to one part of the company or to one specific group in the

company. A pilot needs to be planned and this includes deciding which people

will participate, the provision of training for the participants, and the identifica-
tion of objective criteria to evaluate the new technology. The objective criteria

needs to be identified prior to the commencement of the pilot, and the results of

the pilot are then compared to the evaluation criteria. Further analysis of the
evaluation results then takes place. This allows an informed decision to be made

as to whether deployment of the technology throughout the entire company is

appropriate.
Organization culture needs to be considered for effective technology

transfer. Every organization has a distinct culture and this is reflected in the way

 212 Mathematical Approaches to Software Quality

that people work and in the way in which things are done in the organization.

Organization culture includes the ethos and core values of the organization, its
commitment or resistance to change, and so on. The transfer of new technolo-

gies will be easier in cultures where there is an openness and willingness to

change. However, in other cultures the deployment of new technology may be
difficult due to resistance to change within the organization.

11.2 Formal Methods and Industry

The formal methods community have developed elegant formalisms to assist the

development of high-quality software. However, in practice most software de-
velopers find formal methods unusable, whereas most of the formal methods

community seem unable to understand why software developers find their nota-

tion and methods to be difficult. The chasm between the formal methods com-
munity and industrial programmers has been considered in [Web:93] and

various characteristics of a good formal method have been outlined.

It is not, of course, the role of the formal methods community to sell
formal methods to industry; rather, their role is to develop notations and meth-

ods that are usable, provide education on applying formal methods to students

and interested industrialists, and to provide expert help during pilots of formal
methods in industrial environment. However, in order to develop a usable for-

mal method it is essential that the formal methods community has a better un-
derstanding of the needs of industry and the real commercial constraints of

industrial projects.

An industrial project consists of a project team, and each team member
has various responsibilities in the software development process (e.g., require-

ments, definition, design, implementation, software testing, configuration man-

agement, project management). A project is subject to strict budget, timeliness,
and quality constraints, and the project manager is responsible for delivering a

high-quality product on time and within budget to the customer. An industrial

project follows a defined software process, and there is a need to define the
process to be followed when formal methods are part of the process. Formal

methods need to be piloted prior to their general deployment in an organization

to ensure that there are real benefits gained in higher quality software from their
use and that the commercial constraints (e.g., budget, timeliness, and quality) are

addressed. Late projects can cause the loss of a market opportunity or cause

major customer dissatisfaction and a loss of credibility. Budget overruns and
quality problems can lead to financial loss for the company.

Industry is concerned with finding the most cost-effective solution to

delivering high-quality software on time and within budget. The natural question
[Wic:00] is Under what circumstances does formal methods provide the most

cost effective solution to an industrial problem.1 Any selling of formal methods

1 I see the current answer to the question of where formal methods provide a cost effective solution

as being applications of formal methods to the regulated sector, as this sector requires certification

 11. Technology Transfer 213

to industry must be realistic, as an overselling of the benefits of formal methods

has led to a negative perception of the technology.2 This is since industrialists
have experienced difficulties in working with the immaturity of current formal

methods, and in practice formal methods have not been used extensively due to
problems with their usability.

The development of standards such as 00-55 (British Defense Standard

for the procurement of safety critical software), DO-178B (U.S. standard for
certification of safety critical avionics software), and IEC 61509 (international

standard for critical systems) all mention formal methods as a way to ensure

high-quality software. The 00-55 Defense Standard actually mandates3 the use
of formal methods for formal code verification and specification animation.

The safety critical field is one area where the use of formal methods has

shown good benefits and where the verification of correctness is essential. Qual-
ity and safety cannot be compromised in safety critical systems, and the regu-

lated sector has provided some good case studies in the application of formal

methods. These include the Darlington Nuclear generation station in Canada
where mathematical techniques were employed to certify the shutdown software

of the plant. Other applications include the use of formal methods to certify the
safety critical software is the Paris metro signaling system. The regulatory sector

is concerned with certification of the code with respect to the requirements, and

timeliness is less important than the actual certification. Regulatory systems are
generally expensive as there are often several organizations involved, and the

verification of the correctness of these products is time consuming.

The application of formal methods to mainstream software engineering
has been less successful. Mainstream software engineering is subject to stringent

commercial constraints and the experience to date is that the use of formal

methods does not provide any appreciable gain in quality, timeliness, or produc-

tivity.4 Time to market is often the main commercial driver in mainstream soft-

ware engineering.

that the code meets stringent safety critical and security critical requirements. The cost of certifica-

tion in the regulated sector is high but formal methods can be employed to demonstrate to regulators

that the code conforms to the requirements. The benefit gained is the extra quality assurance gained

as a result of the use of formal methods. The reliability requirements in the regulated sector are much

higher than for conventional systems, and the cost of testing may make it infeasible to verify that

these reliability requirements have been achieved. This makes the use of formal methods a cost-

effective solution. The demonstration includes mathematical proof and testing. As the maturity of

formal methods evolves there may be other circumstances in which formal methods provide the most

cost-effective solution.

2 The overselling of formal methods was discussed briefly in Chapter 1 with respect to the formal

verification of the VIPER chip.

3 The new revisions of Defence Standards 00-55 and 00-56 are now less prescriptive.

4 The CICS project at IBM claimed a 9% increase in productivity. However, Peter Lupton of IBM

outlined difficulties that the engineers had with formal specification in Z at the FME’93 conference.

Care needs to be taken with measurements in software engineering as some software metrics are

unsound. For example, it is easy to increase the productivity of an organization (income per em-

ployee) by a redundancy program. Programmer productivity in terms of lines of code per week are

also unsound as a measure of productivity as the quality of the code needs to be considered.

 214 Mathematical Approaches to Software Quality

11.3 Usability of Formal Methods

There are practical difficulties associated with the usability of formal methods. It

seems to be assumed that programmers and even customers are willing to be-
come familiar with the mathematics used in formal methods. There is little evi-

dence to suggest that customers would be prepared to use formal methods.5

Customers are concerned with their own domain and speak the technical lan-

guage of that domain.6 Often, the use of mathematics is an alien activity that

bears little resemblance to their normal practical work. Programmers are inter-
ested in programming rather than in mathematics, and generally have no interest

in becoming mathematicians.7

 However, the mathematics involved in most formal methods is rea-
sonably elementary, and, in theory, if both customers and programmers are will-

ing to learn the formal mathematical notation, then a rigorous validation of the

formal specification can take place to verify its correctness. Both parties can
review the formal specification to verify its correctness, and the code can be

verified to be correct with respect to the formal specification. It is usually pos-
sible to get a developer to learn a formal method, as a programmer has some

experience of mathematics and logic; however, in practice, it is more difficult to

get a customer to learn a formal method.
This means that often a formal specification of the requirements and an

informal definition of the requirements using a natural language are maintained.

It is essential that both of these documents are consistent and that there is a rig-

orous validation of the formal specification. Otherwise, if the programmer
proves the correctness of the code with respect to the formal specification, and

the formal specification is incorrect, then the formal development of the soft-

ware is incorrect. There are several techniques to validate a formal specification
and these are described in [Wic:00]:

Technique Description

Proof This involves demonstrating that the for-
mal specification satisfies key properties

of the requirements.

The implementation of the software will
also need to preserve these properties. The

proof will generally employ rigorous

mathematical reasoning.

5 The domain in which the software is being used will influence the willingness of the customers to

become familiar with the mathematics required. Certainly, in mainstream software engineering I

have not detected any interest from customers and the perception is that formal methods are unus-

able; however, in some domains such as the regulated sector there is a greater willingness of cus-

tomers to become familiar with the mathematical notation.

6 My experience is that most customers have a very limited interest and even less willingness to use

mathematics. There are exceptions to this especially in the regulated sector.

7 Mathematics that is potentially useful to software engineers is discussed in Chapter 2.

 11. Technology Transfer 215

Software inspec-

tions

This involves a Fagan like inspection to

perform the validation. It may involve
comparing an informal set of requirements

(unless the customer has learned the for-

mal method) with the formal specification.

Specification ani-
mation

This involves program (or specification)
execution as a way to validate the formal

specification. It is similar to testing.

Tools Tools provide some limited support in

validating a formal specification.
Table 11.1. Techniques for Validation of Formal Specification

Why Are Formal Methods Difficult?

Formal methods are perceived as being difficult to use and of offering limited
value in mainstream software engineering. Programmers receive some training

in mathematics as part of their education. However, in practice, most program-

mers who learn formal methods at university never use formal methods again
once they take an industrial position.

It may well be that the very nature of formal methods is such that it is

suited only for specialists with a strong background in mathematics. Some of the
reasons why formal methods are perceived as being difficult are:

Factor Description

Notation / intuition The notation employed differs from that

employed in mathematics. Intuition varies

from person to person. Many programmers
find the notation in formal methods to be

unintuitive.

Formal specifica-

tion

It is easier to read a formal specification

than to write one.

Validation of for-
mal Specification

The validation of a formal specification
using proof techniques or a Fagan-like

inspection is difficult.

Refinement8 The refinement of a formal specification

into successively more concrete specifica-
tions with proof of validity of each refine-

ment step is difficult and time consuming.

Proof Proof can be difficult and time consuming.

Tool support Many of the existing tools are difficult to

use.
Table 11.2. Factors in Difficulty of Formal Methods

8 I doubt that refinement is cost effective for mainstream software engineering. However, it may be

useful in the regulated environment.

 216 Mathematical Approaches to Software Quality

Characteristics of a Usable Formal Method

It is important to investigate ways by which formal methods can be made more

usable to software engineers. This may involve designing more usable notations

and better tools to support the process. Practical training and coaching to em-
ployees can help also. Some of the characteristics of a usable formal method are

the following:

Characteristic Description

Intuitive A good intuitive notation has potential as a

usable formal method. Intuition does vary

among people.

Teachable A formal method needs to be teachable to

the average software engineer. The train-

ing should include (at least) writing practi-
cal formal specifications.

Tool support Usable tools to support formal specifica-

tion, validation, refinement, and proof are

required.

Adaptable to
change

Change is common in a software engineer-
ing environment. A usable formal method

should be adaptable to change.

Technology transfer

path

The process for software development

needs to be defined to include formal
methods. The migration to formal methods

needs to be managed.

Cost9 The use of formal methods should be a

cost effective (timeliness, quality, and pro-
ductivity). There should be a return on

investment from their use.
 Table 11.3. Characteristics of a Usable Formal Method

11.4 Pilot of Formal Methods

The transfer of new technology to the organization involves a structured pilot of
the new technology using objective evaluation criteria. A decision is made fol-

lowing the pilot to either conduct further pilots, abandon the technology, or

transfer the technology within the company. The steps for a pilot of formal
methods are:

9 A commercial company will expect a return on investment from the use of a new technology. This

may be reduced software development costs, improved quality, improved timeliness of projects, or

improvements in productivity. A company does not go to the trouble of deploying a new technology

just to satisfy academic interest.

 11. Technology Transfer 217

Step Description

Overview of technology This provides the motivation for tech-

nology transfer. An organization (or
group) receives an overview of a new

technology that offers potential. E.g., this

may be an approach such as Z or VDM.

Identify pilot project The technology may be sufficiently
promising for the organization to con-

sider a pilot. This involves identifying a

suitable project for the pilot and the iden-
tification of the project participants.

Process for pilot Define the project’s software process to

be followed for the pilot. The process
will detail where formal methods will be

used in the lifecycle.

Training Provide training on the new technology

(formal method) and the process for the
pilot. The training will require the stu-

dents to write formal specifications.

Evaluation criteria

(pilot)

Identify objective criteria to judge the

effectiveness of the new technology.
This includes gathering data for:

 • Productivity measurements

 • Quality measurements

 • Timeliness measurements

Support (pilot) Provide on-site support to assist the de-
velopers in preparing formal specifica-

tions. This may require consultants.

Conduct pilot The pilot is conducted and the coordina-

tor for the pilot will work to address any
issues that arise. Data are gathered to

enable objective evaluation to take place.

Postmortem10 A postmortem is conducted after the pi-

lot to consider what went well and what
did not. The evaluation criteria are com-

pared against the gathered data and rec-

ommendations are made to either
conduct further pilots, abandon the tech-

nology, or institutionalize the new tech-

nology.
 Table 11.4. Steps for Pilot of Formal Methods

10 It may well be that the result of a pilot of formal methods results in a decision that the methodol-

ogy is inappropriate for the company at this time. The bottom line is whether formal methods pro-

vide a more cost effective solution to software engineering problems that other engineering

approaches. Further pilots may be required before a final decision can be made.

 218 Mathematical Approaches to Software Quality

11.5 Technology Transfer of Formal Methods

The transfer of new technology to the organization is done in a controlled man-
ner. The steps in the technology transfer are:

Step Description

Decision to institutional-
ize

A decision is made to transfer the new
technology throughout the organization.

The results of the pilot justify the deci-

sion.

Software development
Process

Update the software development proc-
ess to define how formal methods are

used as part of the development process.

Training Provide practical training to all affected

staff in the company. The training will
include writing formal specifications.

Audits Verify that the new process is being fol-

lowed and that it is effective by conduct-
ing audits. The results of the audits are

reported in management.

Improvements Potential improvements to the technol-

ogy or process are identified and acted
upon.

 Table 11.5. Steps for Technology Transfer of Formal Methods

11.6 Summary

Technology transfer is the disciplined transfer of new technology to a company

and is concerned with the practical exploitation of the new technology. It cannot

be assumed that a new technology or method will necessarily benefit an organi-
zation, and the initial focus is concerned with piloting the new technology and

measuring the benefits gained from its use. The pilot(s) will provide insight into

the effectiveness of the new technology as well as identifying areas that require
further improvement prior to deployment of the technology throughout the com-

pany.

 The pilot is generally limited to one part of the company or to one spe-
cific group in the company. A pilot needs to be planned and this includes decid-

ing which people will participate, the provision of training for the participants,
and the identification of objective criteria to evaluate the new technology. The

 11. Technology Transfer 219

ther analysis and a postmortem take place. This allows an informed decision to

be made as to whether the deployment of the new technology throughout the
entire company is appropriate.

objective criteria needs to be identified prior to the commencement of the pilot,

and the results of the pilot are then compared to the evaluation criteria and fur-

References

Ack:94 Aristotle the Philosopher. J.L. Ackrill. Clarendon Press, Oxford. 1994.

Ada:84 Optimizing Preventive Service of Software Products. E. Adams. IBM

Research Journal, 28(1), pp. 2-14, 1984.

Bec:00 Extreme Programming Explained. Embrace Change. Kent Beck.

Addison Wesley. 2000.

BeM:86 Software Reliability. State of the Art Report. Edited by A. Bendell

and P. Mellor. Pergamon Infotech. 1986.

BjJ:78 The Vienna Development Method. The Meta language. Dines Bjorner

and Cliff Jones. Lecture Notes in Computer Science (61). Springer

Verlag. 1978.

BjJ:82 Formal Specification and Software Development. Dines Bjorner and

Cliff Jones. Prentice Hall International Series in Computer Science.

1982.

Boa:66 Mathematical Methods in the Physical Sciences. M.L. Boas. Wiley

International Series. 1966.

Boe:81 Software Engineering Economics. Barry Boehm. Prentice Hall. 1981.

Boe:88 A Spiral Model for Software Development and Enhancement. Barry

Boehm. Computer. May, 1988.

Bou:94 Formalization of Properties for Feature Interaction Detection. Wiet

Bouma et al. IS&N Conference. Springer Verlag. 1994.

Brk:75 The Mythical Man Month. Fred Brooks. Addison Wesley. 1975.

 References 221

Brk:86 No Silver Bullet. Essence and Accidents of Software Engineering.

Fred Brooks. Information Processing. Elsevier. Amsterdam, 1986.

Bro:90 Rational for the Development of the U.K. Defence Standards for Safety

Critical software. Compass Conference. 1990.

But:99 The VDM Reference. Andrew Butterfield. Foundations and Methods

Group Technical Report. University of Dublin. Trinity College Dublin.

1999.

But:00 VDM Mathematical Structures for Formal Methods. Presentation by

Andrew Butterfield. Foundations and Methods Group. Trinity College,

Dublin. 19th May 2000.

ClN:02 Software Product Lines. Practices and Patterns. Paul Clements and

 Linda Northrop. Addison-Wesley. 2002.

CKS:03 CMMI. Guidelines for Process Integration and Product Improvement.

 Mary Beth Chrissis, Mike Conrad, and Sandy Shrum.

Addison-Wesley. 2003.

CoM:90 Engineering Software under Statistical Quality Control. Richard H.

Cobb and Harlan D. Mills. IEEE Software. 1990.

CSE:00 Unified Modeling Language. Technical Briefing No. 8. Centre for

Software Engineering. Dublin City University. Ireland. April 2000.

Dij:72 Structured Programming. E.W. Dijkstra. Academic Press. 1972.

Dil:90 Z. An Introduction to Formal Methods. Antoni Diller. John Wiley

and Sons. England. 1990.

Fag:76 Design and Code Inspections to Reduce Errors in Software

Development. Michael Fagan. IBM Systems Journal 15(3). 1976.

Fen:00 Quantitative Analysis of Faults and Failures in a Complex Software

 System. Norman Fenton and Niclas Ohlsson. IEEE Transactions on

Software Engineering, 26(8), pp. 797-814. 2000.

Fly:67 Assigning Meaning to Programs. R. Floyd. Mathematical Aspects of

Computer Science. American Mathematical Society. 1967.

Geo:91 The RAISE Specification Language. A Tutorial. Chris George. Lecture

Notes in Computer Science (552). Springer Verlag. 1991.

 222 References

Ger:94 Experience with Formal Methods in Critical Systems. Susan Gerhart,

Dan Craighen, and Ted Ralston. IEEE Software. January 1994.

Glb:94 Software Inspections. Tom Gilb and Dorothy Graham. Addison

Wesley. 1994.

Gri:81 The Science of Programming. David Gries. Springer Verlag. Berlin.

1981.

HB:95 Applications of Formal Methods. Edited by Michael Hinchey and

Jonathan Bowen. Prentice Hall International Series in Computer

Science. 1995.

Her:75 Topics in Algebra. I.N. Herstein. 2nd Edition. John Wiley and Co.

1975.

Hor:85 Communicating Sequential Processes. C.A.R. Hoare. Prentice Hall

International Series in Computer Science. 1985.

Hoa:95 Application of the B-Method to CICS. Jonathon P. Hoare. In

Applications of Formal Methods. Editors Michael Hinchey and

Jonathon P. Bowen. Prentice Hall International Series in Computer

Science. 1995.

InA:91 Practical Formal Methods with VDM. Darrell Ince and Derek Andrews.

McGraw Hill International Series in Software Engineering. 1991.

Jac:99a The Unified Software Modeling Language User Guide. Ivar Jacobson,

Grady Booch, and James Rumbaugh. Addison-Wesley. 1999.

Jac:99b The Unified Software Development Process. Ivar Jacobson, Grady

Booch, and James Rumbaugh. Addison-Wesley. 1999.

Jan:97 On a Formal Semantics of Tabular Expressions. R. Janicki. Technical

Report CRL 355. Communications Research Laboratory. McMaster

University. Ontario. 1997.

Jon:90 Systematic Software Development Using VDM. Cliff Jones. Prentice

Hall International Series in Computer Science. 2nd Edition. 1990.

Hey:66 Intuitionism (An Introduction). A. Heyting. North Holland Publishing

Company. 1966.

Communications of the ACM. Volume 12, No. 10. 1969.

Hor:69 An Axiomatic Basis for Computer Programming. C.A.R. Hoare.

 References 223

Kuh:70 The Structure of Scientific Revolutions. Thomas Kuhn. University of

Chicago Press. 1970.

Lak:76 Proof and Refutations. The Logic of Mathematical Discovery. Imre

Lakatos. Cambridge University Press. 1976.

Let:03 How Software Engineers Use Documentation. Timothy Lethbridge et

al. IEEE Software. November. 2003.

LiT:96 Cleanroom Software Engineering Reference Model. R. Linger and C.

Trammell. Software Engineering Institute. Carnegie Mellon. 1996.

Lof:84 Intuitionist Type Theory. Martin Lof. Study in Proof Theory Series.

Lecture Notes. Bibliopolis. Naples. 1984.

Mac:90 Conceptual Models and Computing. PhD Thesis. Micheal Mac An Air-

chinnigh. Department of Computer Science. University of Dublin. Trin-

ity College, Dublin. 1990.

Mac:93 Formal Methods and Testing. Micheal Mac An Airchinnigh. Tutorials

of the 6th International Software Quality Week. Software Research In-

stitute. San Francisco. 1993.

McD:94 MSc. Thesis. Eoin McDonnell. Department of Computer Science. Trin-

ity College Dublin. 1994.

Men:87 Introduction to Mathematical Logic. Elliot Mendelson. Wadsworth and

Cole/Brook, Advanced Books & Software. 1987.

Mil:79 Structured Programming: Theory and Practice. H. Mills, R. Linger and

B. Witt. Addison-Wesley. 1979.

Mil:87 Cleanroom Software Engineering. H. Mills, M. Dyer, R. Linger. IEEE

Software. Vol. 4. 1987.

Mil:89 Communication and Concurrency. Robin Milner. International Series

in Computer Science. Prentice Hall. 1989.

MOD:91a Def Stan 00-55 (Part 1). Requirements for Safety Critical Software in

 Defence Equipment. Interim Defence Standards. U.K. 1991

MOD:91b Def Stan 00-56. Guidance for Safety Critical Software in Defence

Equipment. Interim Defence Standards. U.K. 1991.

Kel:97 The Essence of Logic. John Kelly. Prentice Hall. 1997.

 224 References

ORg:97 Applying Formal Methods to Model Organizations and Structures in

the Real World. PhD Thesis. Department of Computer Science. Trinity

College, Dublin. 1997.

ORg:02 A Practical Approach to Software Quality. Springer Verlag. 2002.

Par:01 Software Fundamentals. Collected Papers by David L. Parnas. Edited

by Danield Hoffman and David Weiss. Addison Wesley. 2001.

Par:72 On the Criteria to be used in Decomposing Systems into Modules.

David L. Parnas. Communications of the ACM, 15(12). 1972.

Par:92 Tabular Representation of Relations. David L. Parnas. CRL Report

260. McMaster University, Canada. 1992.

Par:93 Predicate Calculus for Software Engineering. David L.Parnas. IEEE

Transactions on Software Engineering, 19(9). 1993.

Par:94 Inspection of Safety Critical Software Using Function Tables. David L.

Parnas. Proceedings IFIP 13th World Computer Congress, vol. 3, North

Holland, pp. 270-277. 1994.

Par:95 Functional Documents for Computer Systems. David L. Parnas and J.

Madley. Science of Computer Programming. Elsevier. 1995.

Pau:93 Key Practices of the Capability Maturity Model. Software Engineering

Institute. Mark Paulk et al. 1993.

PaW:01 Active Design Reviews: Principles and Practice. David L. Parnas and

David M. Weiss. In Software Fundamentals. Collected Papers by David

L. Parnas. Edited by Daniel Hoffman and David Weiss. Addison

Wesley. 2001.

Pif:91 Discrete Mathematics. An Introduction for Software Engineers. Mike

Piff. Cambridge University Press. 1991.

Pol:57 How to Solve It. A New Aspect of Mathematical Method. Georges

Polya. Princeton University Press. 1957.

Pop:97 The Single Transferable Voting System. Michael Poppleton. IWFM’97.

Editors Gerard O’Regan and Sharon Flynn. Springer Verlag. 1997.

Pro:99 Cleanroom Software Engineering. Technology and Process. S.

Prowell, C. Trammell, R. Linger, and J. Poore. SEI Series in Software

Engineering. Addison-Wesley. 1999.

 References 225

Ros:87 Introduction to Probability and Statistics for Engineers and Scientists.

Sheldon M. Ross. Wiley Publications. 1987.

Roy:70 The Software Lifecycle Model (Waterfall). W. Royce. Proceedings of

Westcon. August 1970.

Spi:92 The Z Notation. A Reference Manual. J. M. Spivey. Prentice Hall

International Series in Computer Science. 1992.

Sta:92 Practical Experiences with Safety Assessment of a System for

Automatic Train Control. Proceedings of SAFECOMP’92, Zurich,

 Switzerland. Pergamon Press, Oxford, UK. 1992.

Tie:91 The Evolution of Def Stan 00-55 and 00-56. An Intensification of the

Formal Methods Debate in the UK. Margaret Tierney. Research Centre

for Social Sciences. University of Edinburgh. 1991.

Web:93 Selling Formal Methods to Industry. Debora Weber-Wulff. FME’93.

LNCS 670. 1993.

Wic:00 A Personal View of Formal Methods. B. A. Wichmann. National

Physical Laboratory. March 2000.

Wrd:92 Formal Methods with Z. A Practical Approach to Formal Methods in

Engineering. J. B. Wordsworth. Addison Wesley. 1992.

Abbreviations

ACM Associated Computer Machinery

AMN Abstract Machine Notation

ATM Automated Teller Machine

CCS Calculus Communicating Systems

CICS Customer Information Control System

CMM® Capability Maturity Model

CMMI® Capability Maturity Model Integration

CSP Communicating Sequential Processes

DAG Directed Acyclic Graph

DOD Department of Defense

ESI European Software Institute

FSM Finite State Machine

ICSE International Conference Software Engi-

neering

IEEE Institute of Electrical Electronic Engineers

IFIP International Federation for Information

Processing

ISO International Standards Organization

LD Limited Domain (relation)

LPF Logic Partial Functions

MTBF Mean Time Between Failure

MTTF Mean Time To Failure

NRL Naval Research Laboratory

OCL Object Constraint Language

OMG Object Management Group

OMT Object management technique

OOSE Object-Oriented Software engineering

PIN Personal Identification Number

PVS Prototype Verification System

RACE Research Advanced Communications

Europe

RAISE Rigorous Approach to Industrial Software
Engineering

RUP Rational Unified Process

SCORE Service Creation Object Reuse Environment

SDI Strategic Defence Initiative

SDL Specification and Descriptive Language

SEI Software Engineering Institute

SPI Software Process Improvement

SPICE Software Process Improvement and Capabil-
ity determination

SQA Software Quality Assurance

SSADM Structured Systems Analysis and Design
Method

TAM Trace Assertion Method

UML Unified Modeling Language

VDL Vienna Definition Language

VDM Vienna Development Method

VDM-SL VDM Specification Language

XP Extreme Programming

228 Abbreviations

Index

A

activity diagrams, 27

Algol 60, 128

axiomatic approach, 17

B

bijective, 39

binary relation, 37

Boyer/Moore theorem prover, 30

C

calculus, 7

Capability Maturity Model, 3

CCS, 25

class and object diagrams, 27

conditional probability, 43

controlled variables, 160

Customer Information Control System,

12

D

deduction theorem, 59

Def Stan 00-55, 10

E

equivalence relation, 37

F

finite state machines, 48

formal specifications, 8

G

graph, 50

H

halting problem, 65

I

idempotent, 41

injective, 39

L

limited domain relation, 38

logic of partial functions, 67, 93

endomorphism, 112

homomorphism, 112

Bayes formula, 184

Booch method, 197

Cleanroom, 176

Cleanroom Reference Model, 180

competence set, 38, 170

coverage testing, 178

Darlington Nuclear power plant, 12

CSP, 25, 128

data reification, 88

evaluation criteria, 216

generalized decision table, 151

information hiding, 26, 145

input assertion, 135

loop invariant, 135

M

mathematical documents, 26

mathematical proof, 29, 89

mathematics, 3, 6

matrix, 47

model-oriented approach, 16

module interface specification, 169

monoid, 110

O

Object-Oriented Software Engineering,

P

partial correctness, 24

partial function, 81

partial function is, 39

Plimpton 322, 42

postcondition, 21, 134

precondition, 21, 24, 134

predicate calculus, 22, 41

predicate transformer, 24

probability mass function, 44

probability theory, 43

professional engineers, 4

propositional calculus, 22

Q

R

RAISE, 28

random variable, 44

Rational Unified Process, 207

refinement, 8

reflexive, 37

requirements validation, 8

S

schema calculus, 20

schema composition, 86

scientific revolutions, 16

set theory, 34

software crisis, 1

software engineering, 1

SSADM, 29

Standish group, 2

surjective, 39

syllogistic logic, 53

T

tautology, 59

Taylor series, 47

theorem prover, 30

transition function, 49

transitive, 37

truth table, 55

 230 Index

mean time to failure, 176

miracle, 130

mode transition table, 152

model, 5, 16, 114

monitored variables, 160

Object Modeling Technique, 197

197

Occam’s Razor, 114

output assertion, 135

pilot, 211

process calculi, 25, 138

Quicksort, 128

schema inclusion, 85

semantics, 23, 31, 92, 201

semi-group, 111

sequence diagram, 27, 204

software reliability, 176, 185, 186

state diagrams, 28, 206

statistical usage testing, 178

symmetric, 37

strategic defence initiative, 145

tabular expressions, 26, 146

technology transfer, 211

Turing award, 128

total correctness, 136

U

undefinedness, 41

209

V

VDM, 18, 92, 107

VDM
♣

VIPER, 30

W

waterfall model, 5

weakest precondition, 24

X

XP, 5

Z

Z specification, 20, 76, 91

Zermelo set theory, 21

 231 Index

Z specification language, 128

use case diagram, 203

use case model, 207

, 20, 110

vector function table, 150

unified modeling language, 27, 197,

